Cho P=x-2/x+2 × (5x+10/7x-14 + x-2/3x-6) + 3(x^2-4)/2(x-2)^2
a) Tìm đkxđ
b) Rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\)
\(=10x-6x^3-60-10x\)
\(=\) \(-6x^3-60\)
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\\ =2x.5-2x.3x^2-10.6-10.x\\ =10x-6x^3-60-10x\)
b) \(3\left(-x+2\right)-6\left(1-x+5x^{20}\right)\\ =-3.x+3.2-6.1+6.x-5.5x^{20}\\ =-3x+6-6+6x-25x^{20}=25x^{20}+3x\)
c) \(7x\left(2-5x^2+\dfrac{1}{2}x^3\right)-14x\left(1-2x^2\right)\\ =7x.2-7x.5x^2+7x.\dfrac{1}{2}x^3-14x.1+14x.2x^2\\ =14x-25x^3+\dfrac{7}{2}x^4-14x+28x^3=3x^2+\dfrac{7}{2}x^4\)
Nhìn ko hiểu dâu "|" là dấu ngoặc hay dấu giá trị tuyệt đối
Bạn ghi rõ đề bài ra nha
cái này || ko phải là dấu tuyệt đối đâu mà là phép nhân, chia giua 2 phân số
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
b) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
c) Để \(P< -\dfrac{1}{2}\) thì \(P+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)
\(B=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3\left(x^2-4\right)}{2x^2-8x+8}\)
\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x^2-4x+4\right)}\)
\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{1}{3}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)
\(=\dfrac{x-2}{x+2}\cdot\dfrac{3\left(5x+10\right)+7\left(x-2\right)}{21\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)
\(=\dfrac{1}{x+2}\cdot\dfrac{15x+30+7x-14}{21}+\dfrac{3x+6}{2\left(x-2\right)}\)
\(=\dfrac{22x+16}{21\left(x+2\right)}+\dfrac{3x+6}{2\left(x-2\right)}\)
\(=\dfrac{2\left(x-2\right)\left(22x+16\right)+21\left(x+2\right)\left(3x+6\right)}{42\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{\left(2x-4\right)\left(22x+16\right)+\left(21x+42\right)\left(3x+6\right)}{42\left(x^2-4\right)}\)
\(=\dfrac{44x^2+32x-88x-64+63x^2+126x+126x+252}{42x^2-168}\)
\(=\dfrac{107x^2+196x+188}{42x^2-168}\)
\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)
\(=0-11x+24\)
\(=-11x+24\)
\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)
\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)
\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)
\(=0+0+5\)
\(=5\)