Cho biểu thức A: \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm số nguyên x để A có giá trị là 1 số nguyên
OlM duyệt nhanh cho e đi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\sqrt{x}+3-2}{\sqrt{x}+3}=\frac{\sqrt{x}+3}{\sqrt{x}+3}-\frac{2}{\sqrt{x}+3}=1-\frac{2}{\sqrt{x}+3}\)
=> \(\sqrt{x}+3\inƯ\left(2\right)\)={-1,-2,1,2}
Ta có bảng :
\(\sqrt{x}+3\) | -1 | -2 | 1 | 2 |
x | vô lý | vô lý | vô lý | vô lý |
Vậy ko có x thõa mãn đề bài
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB. Kẻ DE vuông góc với BC( E thuộc BC ) .Tính độ dài AC biết BE=7cm, EC=25cm
Giúp mk vs nha các bn. Mk rất cần gấp!!!
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)
Để P nguyên dương thì x-1 thuộc {1;4;2}
=>x thuộc {2;5;3}
b: x+y+z=0
=>x=-y-z; y=-x-z; z=-x-y
\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)
\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)
\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}}=1+\frac{4}{\sqrt{x}-3}\)
Để A là 1 số nguyên dương thì:
\(\hept{\begin{cases}\frac{4}{\sqrt{x}-3}>-1\\\sqrt{x}-2\inƯ\left(4\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{\sqrt{x}-3}+1>0\\\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{\sqrt{x}+1}{\sqrt{x}-3}>0\\\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x-3}\in\left\{\pm1;\pm2;\pm4\right\}\end{cases}}\)
\(\Rightarrow\sqrt{x}-3\in\left\{1;2;4\right\}\)
Với \(\hept{\begin{cases}\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\\\sqrt{x}-3=2\Rightarrow\sqrt{x}=5\Rightarrow x=25\\\sqrt{x}-3=4\Rightarrow\sqrt{x}=7\Rightarrow x=49\end{cases}}\Rightarrow x\in\left\{16;25;49\right\}\)
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
a) (Tự giải) ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
b) \(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1-\frac{4}{\sqrt{x}-3}\)
c) Để Q là 1 số nguyên => \(1-\frac{4}{\sqrt{x}-3}\in Z\)
Mà \(1\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
=> \(4⋮\sqrt{x}-3\)
Hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
ta lập bảng
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 (TM) | 4 (KTM) | 25 (TM) | 1(TM) | 49(TM) | vô lý |
Vậy x={1;16;25;49}
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A nguyên thì $ phải chia hết cho \(\sqrt{x}\)-3<=>\(\sqrt{x}\)-3 là Ư(4)
Mà Ư(4)={+-1;+-2;+-4}
Do x là số nguyên.Ta có bảng sau:
Vậy x={16;4;25;1;49}
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A có giá trị nguyên thì:
\(1+\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
ta có bảng sau:
1
x
Vậy x={1;4;16;25;4} thì A có giá trị nguyên