I = 1 + 3 + 27 + ... + 59049
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/3+1/9+1/27+1/81+......+1/95049
Ax3=3x(1/3+1/9+1/27+1/81+.........+1/95049)
Ax3=1+1/3+1/9+1/27+1/81+..........+1/19683
Ax3-A=1+1/3+1/9+1/27+1/81+............+1/19683
- (1+1/3+1/9+1/27+1/81+........+1/59049)
=1-1/59049
2xA=59048/59049
A=59048/59049:2
A=29524/59049
A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049
3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
- ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
= 1 - 1/59049
2 x A = 59048/59049
A = 59048/59049 : 2
A = 29524/59049
A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049
3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683 - ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
= 1 - 1/59049
2 x A = 59048/59049
A = 59048/59049 : 2
A = 29524/59049
A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049
3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
- ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
= 1 - 1/59049
2 x A = 59048/59049
A = 59048/59049 : 2
A = 29524/59049
ta có :
= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )
= 59050 + 2190 + 6570 + 270 + 810
= 59050 + ( 2190 + 810 ) + 6570 + 270
= 59050 + 3000 + 6570 + 270
= 59050 + ( 3000 + 6570 ) + 270
= 59050 + 9570 + 270
= 68620 + 270
= 68890
Đặt \(A=\frac{1}{3}+\frac{1}{9}+.......+\frac{1}{59049}\)
\(3A=3.\left(\frac{1}{3}+\frac{1}{9}+......+\frac{1}{59049}\right)\)
\(3A=1+\frac{1}{3}+........+\frac{1}{19683}\)
\(3A-A=\left(1+\frac{1}{3}+......+\frac{1}{19683}\right)-\left(\frac{1}{3}+\frac{1}{9}+........+\frac{1}{59049}\right)\)
\(2A=1-\frac{1}{59049}\)
\(2A=\frac{59048}{59049}\)
\(A=\frac{59048}{59049}:2\)
\(A=\frac{59048}{118098}\)
A=$\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+......+\frac{1}{59049}$
3A=$\frac{1}+frac{1}{3}+\frac{1}{9}+\frac{1}{27}+......+\frac{1}{19683}$
3A-A=2A=1-1/59049=59048/59049
A=59048/118098
tuyên truyền ae chửi báo cáo sai phạm con girl yêu
đừng để nó thôi miên
rất cảm ơn ! gà con ; 1234 ; ...
họ là người tốt đừng để thôi miên
I = 1 + 3^1 + 3^2 + ...+3^10
3I = 3^1 + 3^2 + ... + 3^11
3I - I = 3^1 + 3^2 + ... + 3^11 - 1 - 3^1 - 3^2 - ... - 3^10
2I = 3^11 - 1
I = \(\frac{3^{11}-1}{2}=\frac{177147-1}{2}=\frac{177146}{2}=88573\)