K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2020\cdot2021}+\dfrac{1}{2021\cdot2022}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

13 tháng 7 2021

1/1x2+1/2x3+1/3x4+...+1/2020x2021+1/2021x2022

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021+1/2021-1/2022.

=1/1-1/2022

=2021/2022

21 tháng 7 2023

\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(100-10\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=1.2=2\)

\(\Rightarrow\left(x+\dfrac{206}{100}\right)=\dfrac{5}{2}:2=\dfrac{5}{2}.\dfrac{1}{2}=\dfrac{5}{4}\)

\(\Rightarrow x=\dfrac{5}{4}-\dfrac{206}{100}=\dfrac{125}{100}-\dfrac{206}{100}\)

\(\Rightarrow x=-\dfrac{81}{100}\)

25 tháng 3 2022

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)

\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)

\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)

 

25 tháng 3 2022

thanks youhehe

20 tháng 2 2022

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

A=2022(1/1-1/2+1/2-1/3+...+1/2021-1/2022)

  =2022(1/1-1/2022)

 =2022.2021/2022

ket qua tu tinh nha

25 tháng 4 2021

A = \(\dfrac{2022}{1.2}+\dfrac{2022}{2.3}+\dfrac{2022}{3.4}+...+\dfrac{2022}{2021.2022}\)

\(\dfrac{2022}{1}-\dfrac{2022}{2}+\dfrac{2022}{2}-\dfrac{2022}{3}+\dfrac{2022}{3}-\dfrac{2022}{4}+...+\dfrac{2022}{2021}-\dfrac{2022}{2022}\)

\(\dfrac{2022}{1}-\dfrac{2022}{2022}\)

\(2021\)

Chúc bạn học tốt!! ^^

29 tháng 3 2023

x-(1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2022.2023)= -2024/2023

x-(1-1/2 + 1/2-1/3 + 1/3-1/4 + ... + 1/2022-1/2023)=-2024/2023

x-(1-1/2023)=-2024/2023

x-2022/2023=-2024/2023

x = -2024/2023+2022/2023

x = -2/2023

Vậy x = -2/2023

29 tháng 3 2023

:(((

9 tháng 3 2022

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1/1 - 1/100

= 99/100

Học từ lớp 4 rồi :V

9 tháng 5 2022

999/1000(hình như v)

9 tháng 5 2022

Áp dụng công thức \(\dfrac{1}{k\left(k+1\right)}=\dfrac{1}{k}-\dfrac{1}{k+1}\), ta có:

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{999}-\dfrac{1}{1000}\right)=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

23 tháng 4 2023

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n+1\right)}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

= 1 - \(\dfrac{1}{n+1}\) = \(\dfrac{n}{n+1}\)

23 tháng 8 2021

a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2003.2004}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}=1-\dfrac{1}{2004}=\dfrac{2003}{2004}\)b)Đặt  \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)

\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)\(\Rightarrow A=\dfrac{1002}{2005}\)

a: Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(=\dfrac{2003}{2004}\)