phân tích đa thức thành nhân tử
5x^2+10xy+5y^2
x^3-6x^2+9x
xy+y^2-x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
a) x4 + 2x3 + x2
= x2 ( x2 + 2x + 1 )
= x2 ( x + 1 )2
b) 5x2 - 10xy + 5y2 - 20z2
= 5 [(x2 - 2xy + y2 ) - 4z2 ]
= 5 [( x - y )2 - ( 2z )2 ]
= 5 ( x - y - 2z ) ( x - y + 2z )
c) x3 - x + 3x2y + 3xy2+ y3- y
= ( x3 + 3x2y + 3xy2 + y3 ) - ( x + y )
= (x + y )3 - ( x + y)
= ( x + y ) [( x + y )2 - 1 ]
= ( x + y ) ( x + y + 1 ) ( x + y - 1 )
Câu 1 đề sai rồi bạn ơi
Câu 2/ 5(x2 + 2xy + y2 ) = 5(x +y )2
a) \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
a) \(^{x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)}\)
b)\(a^3-a^2x-ay=a\left(a^2-a.x-y\right)\)
c)\(5x^2-10xy+5y-20z^2=-20z^2+\left(5-10x\right)y+5x^2 \)
\(=-5\left(4z^2+2xy-y-x^2\right)\)
d)\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3xy^2+3x^2y+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
d)
x3 + 2x2y+ xy2 - 9x
=x*(x2+2xy+y2 -9)
=x*[ (x+y)2 -32 ]
=x * (x+y-3) * (x+y-3)
5x^2+10xy+5y^2
=5.(x2+2xy+y2)
=5.(x+y)2
x^3-6x^2+9x
=x.(x2-6x+9)
=x.(x-3)2
xy+y^2-x-y
=y.(x+y)-(x+y)
=(x+y)(y-1)
haha bạn ấy nhấn đúng cho tui nè