phân tích đa thức thành nhân tử
a) x^5 +x^4 +1
b) X^8 + X+1
c) x^8 + x^7+1
d) x^8 + x^4 + z
Cho em xin luôn dạng tổng quát nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =64x^4+16x^2y^2+y^4-16x^2y^2
=(8x^2+y^2)^2-(4xy)^2
=(8x^2+y^2-4xy)(8x^2+y^2+4xy)
b: =x^8+2x^4+1-x^4
=(x^4+1)^2-x^4
=(x^4-x^2+1)(x^4+x^2+1)
=(x^4-x^2+1)(x^4+2x^2+1-x^2)
=(x^4-x^2+1)(x^2+1-x)(x^2+x+1)
c: =(x+1)(x^2-x+1)+2x(x+1)
=(x+1)(x^2-x+1+2x)
=(x+1)(x^2+x+1)
d: =(x^2-1)(x^2+1)-2x(x^2-1)
=(x^2-1)(x^2-2x+1)
=(x-1)^2*(x-1)(x+1)
=(x+1)(x-1)^3
\(a)x^5+x^4+1\)
\(=x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
\(b)x^8+x^7+1\)
\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(#Tuyết\)
a) x12 + 4 = x12 + 4x6 + 4 - 4x6 = (x6 + 2)2 - (2x3)2
= (x6 - 2x3 + 2)(x6 + 2x3 + 2)
b) 4x8 + 1 = 4x8 + 4x4 + 1 - 4x4 = (2x4 + 1)2 - (2x2)2
= (2x4 + 2x2 + 1)(2x4 - 2x2 + 1)
c) x7 + x5 - 1 = x7 - x + x5 + x2 - (x2 - x + 1) = x(x6 - 1) + x2(x3 + 1) - (x2 - x + 1)
= x(x3 - 1)(x3 + 1) + x2(x + 1)(x2 - x + 1) - (x2 - x + 1)
= (x4 - x)(x + 1)(x2 - x + 1) + (x3 + x2)(x2 - x + 1) - (x2 - x + 1)
= (x5 + x4 - x2 - x + x3 + x2 - 1)(x2 -x + 1)
= (x5 + x4 + x3 - x - 1)(x2 - x + 1)
d) x7 + x5 + 1 = x7 - x + x5 - x2 + (x2 + x + 1)
= x(x3 - 1)((x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)((x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x5 - x4 + x2 - x + x3 - x2 + 1)
= (x2 + x + 1)(x5 - x4 + x3 - x + 1)
a) \(x^5-x^4-1\)
\(=\left(x^5+x^2\right)-\left(x^4+x\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x^3+1\right)-x\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
b) \(x^8+x^7+1\)
\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a) Ta có: \(x^4-16x^2=0\)
\(\Leftrightarrow x^2\left(x^2-16\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b) Ta có: \(x^8+36x^4=0\)
\(\Leftrightarrow x^4\left(x^4+36\right)=0\)
\(\Leftrightarrow x^4=0\)
hay x=0
c) Ta có: \(\left(x-5\right)^3-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
d) Ta có: \(5\left(x-2\right)-x^2+4=0\)
\(\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
x8+x7+1= x8+x7+x6-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1
=(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
= x6(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+( x2+x+1)
=(x2+x+1)(x6-x4+x3-x+1)
Câu b, c lm tương tự
(x+2)(x+3)(x+4)(x+5) - 8
=(x+2)(x+5)(x+3)(x+4)-8
=(x2+7x+10)(x2+7x+12)-8
đặt t=x2+7x+10 ta được:
t(t+2)-8=t2+2t-8
=t2-2t+4t-8
=t(t-2)+4(t-2)
=(t-2)(t+4)
thay t=x2+7x+10 ta được:
(x2+7x+8)(x2+7x+14)
vậy (x+2)(x+3)(x+4)(x+5) - 8=(x2+7x+8)(x2+7x+14)
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)