K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2015

\(B=\left(1+4+4^2\right)+...+\left(4^{66}+4^{67}+4^{68}\right)=21.1+...+21.4^{66}\)

\(B=21.\left(1+...+4^{66}\right)\)

Vậy tổng chia hết cho 21

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

11 tháng 12 2017

Câu b, chuyển 3^2010 thành 2^2010 nhé!

8 tháng 11 2018

\(B=3+\left(3^2+3^3+3^4\right)=\left(3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}\right)\)

\(B=3+3.\left(3+3^2+3^3\right)+3^4\left(3+3^2+3^3\right)+3^7\left(3+3^2+3^3\right)\)

\(B=3+\left(3+3^4+3^7\right)\left(3+3^2+3^3\right)=3+39.\left(3+3^4+3^7\right)\)

ta có \(\left\{{}\begin{matrix}39\left(3+3^4+3^7\right)⋮13\\3⋮̸13\end{matrix}\right.\)

\(\Rightarrow3+39.9\left(3+3^4+3^7\right)⋮̸13\)

\(\Rightarrow B⋮̸13\)

vậy B không chia hết cho 13

đề đúng ko vậy

20 tháng 9 2017

a) A = 21 + 22 + 23 + 24 +...+ 22010

=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)

=> A = 6 + 22.6 + ... + 22008.6

=> A = 6 . (1 + 22 + ... + 22008\(⋮\)3 => A \(⋮\)3.

A = 21 + 22 + 23 +...+ 22010

=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)

=> A = 14 + ... + 22007.(2 + 22 + 23)

=> A = 14 + ... + 22007.14

=> A = 14.(1+...+22007\(⋮\)7 => A \(⋮\)7

b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.

Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.

Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.

Chúng bạn học tốt.

5 tháng 1 2021

cho mình hỏi bạn Phúc lí do vì sao lại là 2 mũ 2008

4 tháng 8 2023

\(B=2^1+2^2+2^3+2^4+...+2^{200}+2^{201}\)\(\Rightarrow B=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)+...+2^{199}\left(1+2^1+2^2\right)\)

\(\Rightarrow B=2.7+2^4.7+...+2^{199}.7\)

\(\Rightarrow B=7.\left(2+2^4+...+2^{199}\right)⋮7\Rightarrow dpcm\)

31 tháng 8 2021

a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)

b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)

c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)

31 tháng 8 2021

thanks bạn rất nhiều mik kb với bạn đc ko

 

4 tháng 10 2021

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)