Chứng minh rằng
x5_ x chia hết cho 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 5 x +7y chia hết cho 17
suy ra (17x+17y)-(5x+7y)chia hết cho 17
suy ra (17x-5x)+(17y-7y) chia hết cho 17
suy ra 12x +10y chia hết cho 17
suy ra [(12x+10y) chia 2] chia hết cho 17
= 6x +5y chia hết cho 17
x + 2y chia hết cho 5
=> 3(x + 2y) chia hết cho 5
=>3x + 6y chia hết cho 5
=> 3x chia hết cho 5 (1)
x + 2y chia hết cho 5
=> -2(x + 2y) chia hết cho 5
=> -2x - 4y chia hết cho 5
=> -4y chia hết cho 5 và (1)
=> 3x - 4y chia hết cho 5
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Nếu x+2y chia hết cho 5
=> 3.(x+2y) chia hết cho 5
=> 3x+6y chia hết cho 5
Mà 10y chia hết cho 5
=> (3x+6y)-10y chia hết cho 5
=> 3x-4y chia hết cho 5
Vậy 3x-4y chia hết cho 5
Ta có: 2(x+2y)+(3x-4y)=2x+4y+3x-4y=5x chia hết cho 5
Mà : 2(x+2y)chia hết cho 5 (Vì x+2y chia hết cho 5)
Nên: 3x-4y chia hết cho 5
chính xác rùi đó!
x5-x=x.(x4-1)
với x=5 thì x5-x chia hết cho 5
với x khác 5 thì :
x4 có tận cùng là 1 hoặc 6
=>x4-1 có tận cùng là 5 hoặc 0=>x4-1 chia hết cho 5
=>x5-x chia hết cho 5
Vậy x5_ x chia hết cho 5.