K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2015

Ta có 

15 = \(\sqrt{225}<\sqrt{235}\)

=> 15 < \(\sqrt{235}\)

28 tháng 10 2018

a) \(2-2\sqrt{3}\)\(4-\sqrt{15}\)

Giả sử : \(2-2\sqrt{3}\ge4-\sqrt{15}\)

\(\sqrt{15}-2\sqrt{3}\ge2\)

\(\left(\sqrt{15}-2\sqrt{3}\right)^2\ge2^2\)

⇔ 15 - \(12\sqrt{5}+12\) ≥ 4

⇔ 27 -4 ≥ \(12\sqrt{5}\)

⇔ 23 ≥ \(12\sqrt{5}\)

\(23^2\)\(\left(12\sqrt{5}\right)^2\)

⇔ 529 ≥ 720 (sai)

Vậy 2 - \(2\sqrt{3}< 4-\sqrt{15}\)

b) \(\sqrt{11}+2\)\(3+\sqrt{3}\)

Giả sử : \(\sqrt{11}+2\le3+\sqrt{3}\)

\(\sqrt{11}-\sqrt{3}\le1\)

\(\left(\sqrt{11}-\sqrt{3}\right)^2\le1\)

⇔ 14 - \(2\sqrt{33}\) ≤ 1

⇔ 13 ≤ \(2\sqrt{33}\)

\(13^2\le\left(2\sqrt{33}\right)^2\)

⇔ 169 ≤ 132 (sai)

Vậy \(\sqrt{11}+2\ge3+\sqrt{3}\)

28 tháng 10 2018

Nguyễn Thanh Hằng, Dương Nguyễn, Ngô Thành Chung, Khôi Bùi , Trần Nguyễn Bảo Quyên, Tạ Thị Diễm Quỳnh, Nguyễn Quang Minh, Khánh Như Trương Ngọc, Nguyễn Quang Minh, Mysterious Person, Phùng Khánh Linh, JakiNatsumi, DƯƠNG PHAN KHÁNH DƯƠNG, Hoàng Phong, Ribi Nkok Ngok, ...

10 tháng 8 2016

ta tính VT ra rồi so sánh với VP

22 tháng 6 2017

a,Ta có:

  \(\left(\sqrt{24}+\sqrt{45}\right)^2=24+45=69\)

\(12^2=144\)

Do 69<144 nên ...

b,tương tự ý a

22 tháng 10 2017

Bài 3: Gọi số học sinh giỏi,khá,trung bình lần lượt là a,b,c

Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\); \(\dfrac{b}{c}=\dfrac{4}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{4}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\); \(a+b+c=35\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{35}{35}=1\)

Ta có : \(\dfrac{a}{8}=1\Rightarrow a=8\)

Làm tương tự ta tính được : \(b=12;c=15\)

Vậy số học sinh giỏi là 8 bạn

Số học sinh khá là 12 bạn

Số học sinh trung bình là 15 bạn

22 tháng 10 2017

Bài 1:

\(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+.....-\sqrt{400}\)

\(=1-2+3-4+5-6+.....-20\)

\(=\left(1-2\right)+\left(3-4\right)-\left(5-6\right)+.....+\left(19-20\right)\)

\(=\left(-1\right)\times\dfrac{\dfrac{\left(20-1\right)\times1+1}{2}}{2}\)

\(=\left(-1\right)\times10\)

\(=-10\)

Dễ thế này mà ko ai lm à

Chúc bn học tốtbanhbanhbanhbanhbanh

1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)

\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)

mà 2 căn 21<4 căn 6

nên căn 3+căn 7<2+căn 6

2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)

\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)

mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)

nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)

3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)

\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

mà căn 11>căn 3

nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)

24 tháng 6 2019

Ta có :

√15.√17= √16-1.√16+1

=√162-1

Vì 162-1 < 162 nên

√162-1< √162

Vậy 16> √15.√17

24 tháng 6 2019

\(\sqrt{15}\cdot\sqrt{17}=\sqrt{255}< \sqrt{256}=16\)