K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

Ta có \(a^2=a.a=a.c\Rightarrow a=c\Rightarrow\frac{a}{c}=1\)

Ta có \(\frac{a^2+b^2}{c^2+b^2}=\frac{a^2+b^2}{a^2+b^2}=1=\frac{a}{c}\)

8 tháng 5 2017

Làm ơn viết cái đề rõ hơn dc ko vậy?

8 tháng 5 2017

-_- Viết ra đi cậu. Khó nhìn chết được.

8 tháng 11 2019

Ta có \(\frac{a}{c}=\frac{c}{b}\)=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+b^2}{c^2+d^2}\)             (1)\

Ta lại có : \(\frac{a^2}{c^2}=\frac{a}{c}.\left(\frac{a}{c}\right)=\frac{a}{c}.\left(\frac{c}{b}\right)=\frac{a}{b}\)   ( vì \(\frac{a}{c}=\frac{c}{b}\))             (2)

Từ 1,2 => đpcm

Ta có:

\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a}{b}=c^2\)

Ta lại có: 

\(\frac{a^2+c^2}{b^2+c^2}\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)(đpcm)

31 tháng 5 2018

1. \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(VP=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)

\(\Rightarrow VT=VP\)

2. \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

\(VP=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4+a^2b^2-b^2a^2-b^4=a^4-b^4\)

\(\Rightarrow VT=VP\)

3. \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(bx+ay\right)^2\)

\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(VP=\left(ax-by\right)^2+\left(bx+ay\right)^2=a^2x^2-2axby+b^2y^2+b^2x^2+2bxay+a^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(\Rightarrow VT=VP\)