rút gọn: a) 6x^2 - 8xy / 9xy - 12y^2 b) 2a^3 - 18a / a^4 - 81 MN GIÚP MIK VS MIK ĐAG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(8xy-6x^2)/(12y^2-9xy)
A=2x(4y-3x)/3y(4y-3x)
A=2x/3y
B=(2x^3-18x)/(x^4-81)
B=2x(x^2-9)/(x^2-9)(x^2+9)
B=2x/(x^2+9)
C=(x^2-x-30)/(x^2-25)
C=(x^2+6x-5x-30)/(x^2-25)
C=(x(x+6)-5(x+6))/(x-5)(x+5)
C=(x+6)(x-5)/(x-5)(x+5)
C=(x+6)/(x+5)
Em bấm vào biểu tượng \(\sum\) trên thanh công cụ và gõ phân số để mn dễ hỗ trợ nhé!
`(x^2+x-6)/(x^2+4x+3):(x^2-10x+25)/(x^2-4x-5)(x ne -1,x ne 5,x ne -3)`
`=((x-2)(x+3))/((x+1)(x+3)):(x-5)^2/((x+1)(x-5))`
`=(x-2)/(x+1):(x-5)/(x+1)`
`=(x-2)/(x-5)`
#)Giải :
Đặt \(A=2x^2+9y^2-6xy-6x-12y+1974\)
\(\Rightarrow A=x^2+9y^2+4-6xy-12y+4x+x^2-10x+25+1945\)
\(\Rightarrow A=\left(x^2+9y^2+4-6xy-12y+4x\right)+\left(x^2-10x+25\right)+1945\)
\(\Rightarrow A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1945\ge1945\)
Dâu ''='' xảy ra khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}}\)
Vậy GTNN của A = 1945 tại x = 5 và y = 7/3
Ở câu a) số mũ lúc nào cug dương mà bạn ( 45-10 = 4510). Nếu số mũ là dương thì:
a)\(\frac{45^{10}.5^{20}}{75^{15}}\)
= \(\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}\)
= \(\frac{3^{20}.5^{10}.5^{20}}{3^{15}.5^{30}}\)
= \(\frac{3^{20}.5^{30}}{3^{15}.5^{30}}\)
= \(\frac{3^5.1}{1.1}\)
= \(\frac{243}{1}\)
= 243
b)\(\frac{2^{15}.9^4}{6^6.8^2}\)
= \(\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^2}\)
= \(\frac{2^{15}.3^8}{2^6.3^6.2^6}\)
= \(\frac{2^{15}.3^8}{2^{12}.3^6}\)
= \(\frac{2^3.3^2}{1.1}\)
= \(\frac{8.9}{1}\)
= \(\frac{72}{1}\)
= 72
-Chia nhỏ ra bạn ơi để nhận được câu tl sớm nhất.
-Bạn đặt không mất gì nên cứ đặt thoải mái đuyyy.
-Để dài như này khum ai làm đouuu.
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{x-3\sqrt{x}}\right):\dfrac{2}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{2}\)
\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
b) Thay \(x=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{\sqrt{2}-1+1}{2\cdot\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}=\dfrac{2+\sqrt{2}}{2}\)
c) Để \(A< \dfrac{2}{3}\) thì \(\dfrac{\sqrt{x}+1}{2\sqrt{x}}-\dfrac{2}{3}< 0\)
\(\Leftrightarrow\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{6\sqrt{x}}< 0\)
\(\Leftrightarrow-\sqrt{x}+3< 0\)
\(\Leftrightarrow-\sqrt{x}< -3\)
\(\Leftrightarrow\sqrt{x}>3\)
hay x>9
Vậy: Để \(A< \dfrac{2}{3}\) thì x>9
a) Ta có: \(\dfrac{6x^2-8xy}{9xy-12y^2}\)
\(=\dfrac{2x\left(3x-4y\right)}{3y\left(3x-4y\right)}=\dfrac{2x}{3y}\)
b) \(\dfrac{2a^3-18a}{a^4-81}\)
\(=\dfrac{2a\left(a^2-9\right)}{\left(a^2-9\right)\left(a^2+9\right)}=\dfrac{2a}{a^2+9}\)