K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

a) Do DF//BC⇒ˆAFD=ˆABCDF//BC⇒AFD^=ABC^ (hai góc ở vị trí đồng vị)

ˆADF=ˆACBADF^=ACB^ (hai góc ở vị trí đồng vị)

mà ΔABCΔABC cân đỉnh A nên ˆABC=ˆACBABC^=ACB^

⇒ˆAFD=ˆADF⇒ΔAFD⇒AFD^=ADF^⇒ΔAFD cân đỉnh A

⇒AF=AD⇒AF=AD

Xét ΔAFCΔAFC và ΔADBΔADB có:

AF=ADAF=AD (cmt)

ˆAA^ chung

AC=ABAC=AB (do ΔABCΔABC cân đỉnh A)

⇒ΔAFC=ΔADB⇒ΔAFC=ΔADB (c.g.c) (đpcm)

b) ⇒ˆACF=ˆABD⇒ACF^=ABD^ (hai góc tương ứng)

⇒ˆABC−ˆABD=ˆACB−ˆACF⇒ABC^−ABD^=ACB^−ACF^

⇒ˆDBC=ˆFCB⇒DBC^=FCB^

⇒ΔOBC⇒ΔOBC cân đỉnh O mà ˆCBD=60oCBD^=60o (giả thiết)

⇒ΔOBC⇒ΔOBC đều

c) Xét ΔABCΔABC cân đỉnh A có:

ˆABC=180o−ˆA2=80oABC^=180o−A^2=80o

Áp dụng tính chất tổng ba góc trong 1 tam giác vào ΔBCEΔBCE ta có:

ˆBEC+ˆBCE+ˆEBC=180oBEC^+BCE^+EBC^=180o

⇒ˆBEC=180o−(ˆBCE+ˆEBC)⇒BEC^=180o−(BCE^+EBC^)

=180o−(50o+80o)=50o=180o−(50o+80o)=50o

⇒ˆBEC=ˆBCE=50o⇒ΔBCE⇒BEC^=BCE^=50o⇒ΔBCE cân đỉnh B

⇒BE=BC⇒BE=BC mà BO=BCBO=BC (do ΔOBCΔOBC đều)

⇒BE=BO⇒ΔBEO⇒BE=BO⇒ΔBEO cân đỉnh B

⇒ˆEOB=180o−ˆEBO2=180o−20o2=80o⇒EOB^=180o−EBO^2=180o−20o2=80o

(ˆEBO=ˆEBC−ˆOBC)=80o−60o=20o(EBO^=EBC^−OBC^)=80o−60o=20o

d) Xét ΔFBCΔFBC có: ˆBFC=180o−ˆFBC−ˆFCBBFC^=180o−FBC^−FCB^

=180o−80o−60o=40o=180o−80o−60o=40o

ˆEOF=180o−ˆEOB−ˆBOC=180o−80o−60o=40oEOF^=180o−EOB^−BOC^=180o−80o−60o=40o

⇒ˆEFO=ˆEOF=40o⇒ΔEFO⇒EFO^=EOF^=40o⇒ΔEFO cân đỉnh E ⇒EF=EO⇒EF=EO (1)

Ta có: ΔODFΔODF có: ˆFOD=ˆBOC=60oFOD^=BOC^=60o (đối đỉnh)

ˆDFO=ˆOBC=60oDFO^=OBC^=60o (hai góc ở vị trí so le trong)

⇒ΔODF⇒ΔODF đều ⇒DF=DO⇒DF=DO (2)

Và DEDE chung (3)

Từ (1), (2) và (3) suy ra ΔEFD=ΔEODΔEFD=ΔEOD (c.c.c) (đpcm)

20 tháng 10 2021

Bài này là bài của học sinh giỏi lớp 7 nên không dễ mà giải được đâu

3 tháng 3 2018

a ) Xét tam giác ABD và tam giác ACE có : 

AB = AC ( tam giác ABC cân ) 

Góc BAC chung 

ADB = AEC (  = 90 độ ) 

=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn ) 

=>  AD = AE 

Xét tam giác AEH và tam giác ADH có : 

AE = AD  

AEH = ADH ( = 90 độ ) 

AH chung 

=> tam giác AEH = tam giác ADH (  ch cgv ) 
=>  góc EAH = góc DAH 

hay góc BAI = góc CAI 
Xét tam giác BAI và tam giác CAI có : 

AB = AC 

góc BAI  = góc CAI 

AI chung

=> tam giác BAI = tam giác CAI 

=> AIB = AIC 

MÀ AIB + AIC = 180 độ ( kề bù ) 

=> AI vuông góc BC

hay AH vuông góc BC 

3 tháng 3 2018

giúp mk với ná

3 tháng 3 2018

A B C D E F I x

Gọi Fx là tia đối của tia FA

Do tính chất góc ngoài của tam giác, ta có

\(\hept{\begin{cases}\widehat{xFb}=\widehat{fAb}+\widehat{aBf}\\\widehat{xFc}=\widehat{fAc}+\widehat{aCf}\end{cases}}\)

Nên \(\widehat{xFb}+\widehat{xFc}=\widehat{fAb}+\widehat{fAc}+\widehat{aBf}+\widehat{aCf}\)

Do đó \(\widehat{bFc}=\widehat{bAc}+\frac{1}{3}\left\{\widehat{aBc}+\widehat{aCb}\right\}\)
\(=90^o+\frac{1}{3}90^o=120^o\)

23 tháng 4 2017

Ai trả lời giùm mk đi ak mk cần gấp lắm

23 tháng 4

 

 

30 tháng 4 2016

tg BDC và KDC vuông tại D có:

CD chung

DB=DK (gt)

=> tg BDC=KDC ( C-g-c)

=> góc B=DKC

mà góc B = ECB

=> góc ECB=DKC

cho mik nha mik nhanh và đúg nhá

21 tháng 2 2017

de sai

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEABài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNCBài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEA
Bài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNC
Bài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng quy
Bài 4:Cho tam giác ABC,đường cao AH.Trên nửa mp bờ AB không chứa C lấy D sao cho BD=BA,BD vuông góc BA.Trên nửa mp bờ AC không chứa B lấy E sao cho CE=CA,CE vuông góc CA.CMR:các đường thẳng AH,BE,CD đồng quy
Bài 5:Cho tam giác ABC vuông tại A.cạnh huyền BC=2AB,D trên AC ,E trên AB sao cho góc ABD = 1/3 góc ABC, góc ACE=1/3 góc ACD.Gọi F là giao điểm của BD và CE .Gọi I và K là hình chiếu của F trên BC và AC.Lấy H và G sao cho AC là trung trực của FH,BC là trung trực FG.CM:a,H,B,G thẳng hàng
b,tam giác DEF cân
Bài 6:Cho tam giác ABC nhọn, xác định D trên BC,E trên AC,F trên AB sao cho chu vi tam giác DEF nhỏ nhất

2
2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o

2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 

Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 

=> ^DCM = ^AEB và BE = MC (1) 

Δ BMD = Δ BED (c - g - c) 

=> ^BMD = ^BED và BM = BE (2) 

(1) và (2) cho: 

^DCM = ^BMD và CM = MB 

=> Δ BMC cân tại M 

mà ^DMC + ^DCM = 90o (Δ MDC vuông) 

=> ^DMC + ^BMD = 90o 

=> Δ BMC vuông cân. 

=> BCM = 45o 

Mà ^ACB + ^DCM = ^BCM 

=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))