So sánh A với 3 biết : A =2006/2007+2007/2008+2008/2006
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}\)
\(A=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{2}{2006}\)
\(A=\left(1+1+1\right)+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)\)
\(A=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)\)
Ta thấy : \(\frac{1}{2006}-\frac{1}{2007}>0\); \(\frac{1}{2006}-\frac{1}{2008}>0\)\(\Rightarrow A>3\)
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}=1-\frac{1}{2007}+1-\frac{1}{2008}+1+\frac{2}{2006}=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)\)
Vì 2006<2007, 2006<2008 nên \(\frac{1}{2006}>\frac{1}{2007};\frac{1}{2006}>\frac{1}{2008}=>\frac{1}{2006}-\frac{1}{2007}>0,\frac{1}{2006}-\frac{1}{2008}>0\)
=> \(A=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)>3=>A>3\)
bạn ơi cái dấu bằng to và dấu lớn to là dấu suy ra ak
Ta có: 3 = 1 + 1 + 1
Ta có: 2006/2007 < 1 ; 2007/2008 < 1 ; 2008/2009 < 1
Nên 2006/2007 + 2007/2008+ 2008/2009 < (1+1+1=3)
Ta có: \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}\)
\(A=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{2}{2006}\)
\(A=3+\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2008}>3\)
Vậy A > 3
Ta thấy:
2005/2006 = 1 - 1/2006
2006/2007 = 1 - 1/2007
2007/2008 = 1 - 1/2008
2008/2005 = 1 + 3/2005
Mà: 1/2005 > 1/2006 > 1/2007 > 1/2008
=> 3/2005 - 1/2006 - 1/2007 - 1/2008 > 0
=> 2005/2006 + 2006/2007 + 2007/2008 + 2008/2005 > 4
ta có A= 3 - (1/2006 + 1/2007) + 2/2006
để so sánh A với 3 ta sẽ chuyển về so sánh (1/2006 + 1/2007) với 2/2006
nếu (1/2006 + 1/2007) < hơn 2/2006 thì A > 3 và ngược lại
So sánh: ta có (1/2006+1/2007) < (1/2006+1/2006)=2/2006
vậy A>3
A= (1-1/2007)+(1-2008)+(1+2/2006)
=3+1/2006+1/2006-1/2007-1/2008
Mà 1/2006>1/2007>1/2008 nên A>3
2006/2007<1
2007/2008<1
2008<2009<1
2009/2006>1
A=2006/2007+2007/2008+2008/2009+2009/2006\(\approx\)3+1=4
\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}\)
\(\Rightarrow\frac{2008}{2006}>1\)
\(\frac{2006}{2007}< 1;\frac{2007}{2008}< 1\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}< 2\)
\(\Rightarrow\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}< 3\)
A =2006/2007+2007/2008+2008/2006
= \(\frac{2006}{2007}\)+ \(\frac{2007+1}{2008}\)+ \(\frac{2008}{2006+2}\)
= 1 - \(\frac{1}{2007}\)+ 1 - \(\frac{1}{2008}\)+ 1 + \(\frac{1}{2006}\)+ \(\frac{1}{2006}\)
= 3 + ( \(\frac{1}{2006}\)- \(\frac{1}{2007}\)) + ( \(\frac{1}{2006}\)- \(\frac{1}{2008}\))
vì \(\frac{1}{2006}\)> \(\frac{1}{2007}\), \(\frac{1}{2006}\)> \(\frac{1}{2008}\)nên A > 3