CMR:
S=(x+1)(x+2)(x+3)(x+4)+1 luôn luôn là 1 số chính phương ∀ x ∈ Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi hình như đề cho thừa thì phải
Vì nếu bạn thay x=2 thì f(x) ko cp
Sửa lại đề rùi nói cho mk , mk làm cho nha
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.
A = (x+2)(x+4)(x+6)(x+8)+16 =(x+2)(x+8)(x+4)(x+6)+16 =(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+20
ta được: (t-4)(t+4) =t2-16 thay lại biểu thức A ta đc:
A = t2 -16 +16 =t2 =(x2+10x+20)2
Vậy A là số CP
\(A=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Leftrightarrow A=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
Đặt \(y=x^2+10+20\)
\(\Rightarrow A=\left(y-4\right)\left(y+4\right)+16\)
\(\Leftrightarrow A=y^2-16+16\)
\(\Leftrightarrow A=y^2=\left(x^2+10x+20\right)^{20}\)
Vậy với mọi STN x thì A luôn là 1 số chính phương
\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)
\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)
\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y+1+xy\right)^2\) là SCP
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)
= 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)
=(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)
=(x+y)2+(xy+1)2+2(x+y)(1+xy)
=(x+y+xy+1)2
\(S=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\) là SCP (đpcm)