Cho đa thức Q(x) = 5x2 – 5 + a2 + ax. Tìm các giá trị của a để Q(x) có nghiệm x = – 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức Q(x) có nghiệm x = -1 nên Q(-1) = 0 hay
\(5.\left(-1\right)^2-5+a^2-a=0\)
\(\Leftrightarrow a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Vậy a = 0 hoặc a = 1
Lời giải:
Để $Q(x)$ có nghiệm $x=-1$ thì $Q(-1)=0$
hay $5(-1)^2-5+a^2+a(-1)=0$
hay $a^2-a=0$
hay $a(a-1)=0$
$\Rightarrow a=0$ hoặc $a=1$
Ta có \(Q\left(1\right)=5-5+a^2-a=0\Leftrightarrow a\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
a: \(P\left(x\right)=A\left(x\right)+B\left(x\right)=2x^2-x^3+x^3-x^2-3x+4=x^2-3x+4\)
b: Theo đề, ta có: Q(-1)=0
\(\Leftrightarrow5-5+a^2-a=0\)
=>a(a-1)=0
=>a=0 hoặc a=1
a, \(P\left(x\right)=2x^2-x^3+x^3-x^2+4-3x=x^2-3x+4\)
b, Ta có \(Q\left(-1\right)=5-5+a^2+a=a^2+a=0\)
\(\Leftrightarrow a\left(a+1\right)=0\Leftrightarrow a=0;a=-1\)
thay x= -1 vào đa thức trên, ta được:
Q(-1)= 5.(-1)2 - 5 + a^2 +a.(-1)
Q(-1)= 5 - 5 + a^2 - a
=> a^2 - a = 0
(=) a(a-1)=0
(=) a=0 hay a-1=0
=> a=0 hay a=1
Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .
Ta có đồng thời:
\(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)
Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:
\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)
=> \(1-x_0=0\)
=> \(x_0=1\)
Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.
Để x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
\(Q(x)\) có nghiệm x=-1
\(\Rightarrow Q(-1)=0\)
\(\Leftrightarrow 5.(-1)^2-5+a^2-a=0 \Leftrightarrow a^2-a=0 \Leftrightarrow \left[\begin{array}{} a=0\\ a=1 \end{array} \right.\)
cam on