K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021
Ngu dốt
21 tháng 7 2017

A B C H

ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)

ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\) 

                           \(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)

     \(\Rightarrow CH=3,2\) (do BH>0)

\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)

\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)

ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)

                        

25 tháng 6 2016

Đặt BH = x (x > 0) => BC = (x + 6,4)

Có: AB2 = BH.BC => 36 = x(x + 6,4) => 36 = x2 + 6,4x => x2 + 6,4x - 36 = 0

          => (x + 10)(5x - 18) = 0 => x = -10 (loại) hoặc x = 18/5 (nhận)

=> BH = 18/5cm => BC = 18/5 + 6,4 = 10cm

Có: AC2 = HC.BC = 6,4 . 10 = 64 => AC = 8cm

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH=\sqrt{\frac{576}{25}}=\frac{24}{5}cm\)

         Vậy BC = 10cm , BH = 18/5cm , AH = 24/5cm , AC = 8cm

26 tháng 6 2016

\(\Delta ABC\)có A=90 và AH là đường cao

Áp dụng hệ thức giữa cạnh góc vuông và hingf chiếu của nó trên cạnh huyền

 => \(AB^2=CH.BC\);  \(AC^2=HC.BC\)

<=>  \(AB^2=\left(BC-CH\right)BC\)

 <=>\(BC^2=AB^2+CH.BH\)

=>\(BC^2=6^2+6,4.BC\)

<=> \(BC^2-6,4.BC-36=0\)

=> BC = 10(cm) (nhận)  :  BC=- 3,6 (cm) (loại)

=> \(AC=\sqrt{CH.BC}=\sqrt{6,4.10}=8\)(cm)

=>BH=  BC - CH =10 - 6,4 = 3,6 (cm)

Áp dụng hệ thức giữa đường cao và các cạnh trong tam giác 

=> AH.BC =AB.AC

=>AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=4.8\left(cm\right)\)

Vậy AH =4,8 (cm) ;  BC = 10 (cm)  ; AC =8(cm)  ; BH = 3,6 (cm)

2 tháng 8 2021

sai r b oi htlg dau tien sai roi bai nay phat dat x chu

 

17 tháng 7 2017

Qqqqqqqqqqqqqqqqq

30 tháng 8 2018

Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Lời giải:
a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất đường phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$ nên:

$BD=20:(3+4).3=\frac{60}{7}$ (cm) 

$CD= 20:(3+4).4=\frac{80}{7}$ (cm) 

b.

$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm) 
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm) 

$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Hình vẽ: