Viết đa thức sau dưới dạng tích
x\(^3\)+6x\(^2\)+11x+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3+6x2+11x+6=x3+6x2+9x+2x+6
=x.(x2+6x+9)+2.(x+3)
=x.(x2+3x+3x+9)+2.(x+3)
=x.[x.(x+3)+3.(x+3)]+2.(x+3)
=x.(x+3)(x+3)+2.(x+3)
=(x+3)[x.(x+3)+2]
=(x+3)(x2+3x+2)
=(x+3)(x2+x+2x+2)
=(x+3)[x.(x+1)+2.(x+1)]
=(x+1)(x+2)(x+3)
\(x^3+6x^2+11x+6=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
a) x3 - 6x2 + 11x - 6
= ( x3 - 2x2 ) - ( 4x2 - 8x ) + ( 3x - 6 )
= x2( x - 2 ) - 4x( x - 2 ) + 3( x - 2 )
= ( x - 2 )( x2 - 4x + 3 )
= ( x - 2 )( x2 - x - 3x + 3 )
= ( x - 2 )[ x( x - 1 ) - 3( x - 1 ) ]
= ( x - 2 )( x - 1 )( x - 3 )
b) x3 - 6x2 - 9x + 14
= ( x3 - x2 ) - ( 5x2 - 5x ) - ( 14x - 14 )
= x2( x - 1 ) - 5x( x - 1 ) - 14( x - 1 )
= ( x - 1 )( x2 - 5x - 14 )
= ( x - 1 )( x2 + 2x - 7x - 14 )
= ( x - 1 )[ x( x + 2 ) - 7( x + 2 ) ]
= ( x - 1 )( x + 2 )( x - 7 )
c) x3 + 6x2 + 11x + 6
= ( x3 + 2x2 ) + ( 4x2 + 8x ) + ( 3x + 6 )
= x2( x + 2 ) + 4x( x + 2 ) + 3( x + 2 )
= ( x + 2 )( x2 + 4x + 3 )
= ( x + 2 )( x2 + x + 3x + 3 )
= ( x + 2 )[ x( x + 1 ) + 3( x + 1 ) ]
= ( x + 2 )( x + 1 )( x + 3 )
e) x6 - 9x3 + 8
Đặt t = x3
bthuc <=> t2 - 9t + 8
= t2 - t - 8t + 8
= t( t - 1 ) - 8( t - 1 )
= ( t - 1 )( t - 8 )
= ( x3 - 1 )( x3 - 8 )
= ( x - 1 )( x2 + x + 1 )( x - 2 )( x2 + 2x + 4 )
\(A\left(x\right)=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
Với x =-1;-2;-3 thì A(x) =0
=> Số nghiệm của đa thức A(x) là 3
a,
\(x^3-6x^2+11x-6=x^3-x^2-5x^2+5x+6x-6\)
\(=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x^2-2x-3x+6\right)\)
\(=\left(x-1\right)\left[x\left(x-2\right)-3\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
b,
\(x^3-19x-30=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x-6\right)\)
\(=\left(x-5\right)\left(x^2-6x+x-6\right)\)
\(=\left(x-5\right)\left[x\left(x-6\right)+\left(x-6\right)\right]\)
\(=\left(x-5\right)\left(x+1\right)\left(x-6\right)\)
Dựa vào lược đồ Hoóc-le sau khi phân tích, ta có:
f(x)=x3+6x2+11x+6=0
Suy ra:(x-1)(x2+5x+6)=0
Vậy x-1=0 =>x=1 (1)
Hoặc x2+5x+6=0 =>x2 -x+6x+6=0 =>x(x+1)+6(x+1)=0 =>(x+1)(x+6)=0
=> x+1=0 =>x=-1 (2)
hoặc x+6=0 =>x=-6 (3)
Từ (1),(2) và (3) =>Đa thức F(x) có 3 nghiệm là x=1;x=-1 và x=-6.
~~~~CHÚC BN HOK TỐT~~~~~
Nếu bn ko hiểu về lược đồ Hoóc-le thì lên mạng tra nha!!!!
\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
x3+6x2+11x+6=x3+6x2+9x+2x+6
=x.(x2+6x+9)+2.(x+3)
=x.(x2+3x+3x+9)+2.(x+3)
=x.[x.(x+3)+3.(x+3)]+2.(x+3)
=x.(x+3)(x+3)+2.(x+3)
=(x+3)[x.(x+3)+2]
=(x+3)(x2+3x+2)
=(x+3)(x2+x+2x+2)
=(x+3)[x.(x+1)+2.(x+1)]
=(x+1)(x+2)(x+3)
x3 + 6x2 + 11x + 6 = (x3 + x2) + (5x2 + 5x) + (6x + 6) = x2(x + 1) + 5x(x + 1) + 6(x+1) = (x+1)(x2 + 5x + 6) = (x+1)(x2 + 2x + 3x + 6) = (x+1)[x(x+2) + 3(x+2)] = (x+1)(x+2)(x+3)