K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2019

Cho \(a=b=c\) ta có:

\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\Leftrightarrow1\ge2\)

Bất đẳng thức sai

NV
18 tháng 11 2019

\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

1 tháng 12 2019

Có: \(\frac{a^4}{b^2c}+\frac{b^4}{c^2a}+b\ge\frac{3ab}{c}\)

Tương tự, ta cũng được: \(\Sigma_{cyc}\frac{a^4}{b^2c}\ge\frac{3}{2}\Sigma_{cyc}\frac{ab}{c}-\frac{1}{2}\Sigma_{cyc}a\)

Cần CM: \(\Sigma_{cyc}\frac{ab}{c}\ge\Sigma_{cyc}a\)

Có: \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

Tương tự, ta có đpcm 

Dấu "=" xảy ra khi a=b=c 

15 tháng 5 2018

Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp

1 tháng 8 2020

Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)

\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)

\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)

Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Ta thực hiện phép đổi biến thì:

\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)

Đến đây là phần của bạn

16 tháng 7 2019

Sửa đề:

Cho a, b, c > 1(chỗ này là ý tui, dùng Wolfram Alpha sẽ thấy nếu không sửa như vầy thì đẳng thức không xảy ra). CMR:

\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) (cái này là ý chủ tus đấy nhá!)

\(\Leftrightarrow\frac{2a}{2a-1}+\frac{2b}{2b-1}+\frac{2c}{2c-1}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\) (tách ghép vế trái + làm chặt BĐT do \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};..\))

\(\Leftrightarrow\frac{2a^2-4a+2}{a\left(2a-1\right)}+\frac{2b^2-4b+2}{b\left(2b-1\right)}+\frac{2c^2-4c+1}{c\left(2c-1\right)}\ge0\) (chuyển vế + quy đồng)

\(\Leftrightarrow\frac{2\left(a-1\right)^2}{a\left(2a-1\right)}+\frac{2\left(b-1\right)^2}{b\left(2b-1\right)}+\frac{2\left(c-1\right)^2}{c\left(2c-1\right)}\ge0\) (đúng)

Đẳng thức xảy ra khi a = b = c = 1

Vậy ta có đpcm.

16 tháng 7 2019

\(\frac{1}{2a-1}+1\ge\frac{\left(1+1\right)^2}{2a-1+1}=\frac{4}{2a}=\frac{2}{a}\)