K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn xem lại đề

18 tháng 10 2021

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2

Ta có:

Khi \(x\in\left[-3;0\right]\) thì \(f\left(x\right)\in\left[-4;5\right]\) (dùng BBT)

Lại có:

\(y=f\left(f\left(x\right)\right)=f^2\left(x\right)+6f\left(x\right)+5\) 

Khi \(f\left(x\right)\in\left[-4;5\right]\) thì \(f\left(f\left(x\right)\right)\in\left[-4;60\right]\) (dùng BBT)

Do đó, \(m=-4\Leftrightarrow f\left(x\right)=-3\Leftrightarrow x=-2\)

và \(M=60\Leftrightarrow f\left(x\right)=5\Leftrightarrow x=0\)

\(\Rightarrow S=m+M=-4+60=56\)

6 tháng 2 2022

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

6 tháng 2 2022

sai

NV
26 tháng 3 2023

\(\Leftrightarrow\sqrt{2t^2+mt-m-1}=t-1\) có 2 nghiệm thỏa mãn \(1\le t< 3\)

\(\Rightarrow2t^2+mt-m-1=t^2-2t+1\)

\(\Leftrightarrow f\left(t\right)=t^2+\left(m+2\right)t-m-2=0\) có 2 nghiệm \(1< t_1< t_2< 3\) (hiển nhiên \(t=1\) ko là nghiệm)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\\f\left(1\right)=1>0\\f\left(3\right)=9+3\left(m+2\right)-m-2>0\\1< \dfrac{t_1+t_2}{2}=\dfrac{-m-2}{2}< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)\left(m+6\right)>0\\2m+13>0\\2< -m-2< 6\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\\m>-\dfrac{13}{2}\\-8< m< -4\end{matrix}\right.\) \(\Rightarrow-\dfrac{13}{2}< m< -6\)

NV
4 tháng 4 2021

\(g\left(x\right)=x^4-4x^3+4x^2+a\)

\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)

TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)

TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)

3 tháng 2 2021

ĐKXĐ : \(-1\le x\le3\)

- ADbu nhi : \(\left(\sqrt{x+1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(\left(\sqrt{x+1}\right)^2+\left(\sqrt{3-x}\right)^2\right)\)

\(=2\left(x+1+3-x\right)=2.4=8\)

\(\Rightarrow\sqrt{x+1}+\sqrt{3-x}\le\sqrt{8}=2\sqrt{2}\)

- Dấu " = " xảy ra \(\Leftrightarrow\dfrac{1}{\sqrt{x+1}}=\dfrac{1}{\sqrt{3-x}}\)

\(\Leftrightarrow x+1=3-x\)

\(\Leftrightarrow x=1\left(TM\right)\)

\(\Rightarrow Max_{f\left(x\right)}=2\sqrt{2}\) tại x = 1.

- Có : \(\sqrt{x+1}+\sqrt{3-x}\ge\sqrt{x+1+3-x}=\sqrt{4}=2\)

- Dấu " = " xảy ra <=> x = -1 ( TM )

\(\Rightarrow Min_{f\left(x\right)}=2\) tại x = - 1 .