K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2021

\(2x+3\ge0\)

\(\Leftrightarrow x\ge\dfrac{-3}{2}\)

29 tháng 6 2021

ĐK:`4/(2x-1)>=0(x ne 1/2)`

Mà `4>0`

`<=>2x-1>0`

`<=>2x>1`

`<=>x>1/2`

Vậy `x>1/2` thì `sqrt{4/(2x-1)}` có nghĩa

29 tháng 6 2021

\(DK:\left\{{}\begin{matrix}2x-1>0\\4\ge2x-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x\le\dfrac{5}{2}\end{matrix}\right.\)

Vậy \(x\in(\dfrac{1}{2};\dfrac{5}{2}]\) hay \(\dfrac{1}{2}< x\le\dfrac{5}{2}\)

a: ĐKXĐ: (x-1)(x-3)>=0

=>x>=3 hoặc x<=1

b: ĐKXĐ: (x-4)(x-3)>=0

=>x>=4 hoặc x<=3

c: ĐKXĐ: (x-5)(x-4)>=0

=>x>=5 hoặc x<=4

18 tháng 12 2020

a/ ĐKXĐ : \(-2x+3\ge0\)

\(\Leftrightarrow x\le\dfrac{3}{2}\)

b/ ĐKXĐ : \(3x+4\ge0\)

\(\Leftrightarrow x\ge-\dfrac{4}{3}\)

c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x

d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)

\(\Leftrightarrow3x+5< 0\)

\(\Leftrightarrow x< -\dfrac{5}{3}\)

e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)

P.s : không chắc lắm á!

 

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

16 tháng 5 2021

a) ĐK: x ≥ 2

\(\sqrt{3x-6}=3\)

\(\Leftrightarrow3x-6=9\)

<=> 3x = 15

<=> x = 5

Vậy:....

b) ĐK: 5x - 16 ≥ 0

<=> 5x ≥ 16

<=> x ≥ 16/5

\(\sqrt{5x-16}=2\)

<=> 5x - 16 = 4

<=> 5x = 20

<=> x = 4

c) ĐK: \(x^2-4x+3\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

16 tháng 5 2021

bình phương hai vế ta được:

a)điều kiện của x:x≥2

3x-6=9 <=> x=5(nhận)

b)ĐK: x≥16/5

5x-16=4 <=>x=4(nhận)

c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)\(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)

ĐKXĐ: x≠3 ;x≠1

15 tháng 8 2023

đkxđ: 

\(x^2-4x+3\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)

Vậy đkxđ của biểu thức là \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)

15 tháng 8 2023

đkxđ: 

�2−4�+3≥0

⇔(�−1)(�−3)≥0

⇔[{�−1≥0�−3≥0{�−1≤0�−3≤0

⇔[�≥3�≤1

Vậy đkxđ của biểu thức là [�≥3�≤1
 

a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)

d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)

5 tháng 6 2018

ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\x+\sqrt{2x-1}\ge0\\x-\sqrt{2x-1}\ge0\end{cases}}\)

<=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\x+\sqrt{2x-1}\ge0\left(luondungvix\ge\frac{1}{2}\right)\\x\ge\sqrt{2x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2\ge2x-1\left(x\ge\frac{1}{2}>0\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2\ge0\left(luondung\right)\end{cases}}\)

\(\Leftrightarrow x\ge\frac{1}{2}\)

5 tháng 6 2018

\(x\ge\frac{1}{2}\)