K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

Để toán hình thì vẽ hộ ra bạn ơi :v

8 tháng 7 2021

A B C E D

a) Xét tam giác ABC cân tại A có: AD là đường phân giác

=> AD cũng là đường trung tuyến

Ta có: 2 đường trung tuyến AD và BE cắt nhau tại O

=> O là trọng tâm của tam giác ABC   (đpcm)

b) Vì D là trung điểm của BC nên BD = BC : 2 = 4 (cm)

Ta có: AD là đường phân giác của tam giác ABC cân tại A

=> AD cũng là đường cao

Xét tam giác ABD vuông tại D có: AB2 = AD2 + BD2  (định lí Pytago)

=> AD2 = AB2 - BD2 = 9

=> AD = 3 (cm)

Mà O là trọng tâm của tam giác ABC

=> OD = AD . 1 : 3 = 1 (cm)

c) Để O là giao điểm của 3 đường phân giác của tam giác ABC

Mà AD cũng là đường phân giác

=> Tam giác ABC đều

a) Xét ΔABD và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: BD=CD(hai cạnh tương ứng)

mà B,D,C thẳng hàng(gt)

nên D là trung điểm của BC

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh BC(cmt)

BE là đường trung tuyến ứng với cạnh BC(gt)

AD cắt BE tại O(gt)

Do đó: O là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

b) Ta có: D là trung điểm của BC(cmt)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=5^2-4^2=25-16=9\)

hay AD=3(cm)

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh CB(cmt)

O là trọng tâm của ΔABC(cmt)

Do đó: \(OD=\dfrac{1}{3}AD\)(Tính chất trọng tâm của tam giác)

hay OD=1(cm)

Vậy: OD=1cm

c) Xét ΔABC có 

O là giao điểm của 3 đường phân giác

O là giao điểm của 3 đường trung tuyến

Do đó: ΔABC đều

Bạn tự kẻ hình nhé .

a)Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là trung tuyến của \(\Delta ABC\)

Xét \(\Delta ABC\),có:

AD,BE là hai đường trung tuyến

O là giao điểm của AD và BE

\(\Rightarrow O\)là trọng tâm của \(\Delta ABC\)

b)Vì AD là trung tuyến của ​\(\Delta ABC\)

\(\Rightarrow D\)là trung điểm của BC

\(\Rightarrow BD=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)

​Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là đường cao của \(\Delta ABC\)

Áp dụng định lí Pytago cho \(\Delta ABD\)vuông tại D ,có:

\(AD^2=AB^2-BD^2=5^2-4^2=9\)

\(\Rightarrow AD=\sqrt{9}=3\left(cm\right)\)

Vì O là trọng tâm của \(\Delta ABC\)

\(\Rightarrow OD=\frac{1}{3}AD=\frac{1}{3}.3=1\left(cm\right)\)

c)Để O là giao điểm của 3 đường phân giác của \(\Delta ABC\)

thì \(BE\)là phân giác của \(\Delta ABC\)

mà BE là đường trung tuyến của \(\Delta ABC\)

\(\Leftrightarrow\Delta ABC\)đều .​

5 tháng 7 2021

tui có chơi

Cho tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại Oa) Chứng minh: O là trọng tâm tam giác ABCb) tính độ dài OD biết AB =5cm, BC =8cmc) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của Tam giác ABC?giúp liền là được tiền...
Đọc tiếp

Cho tam giác ABC cân ở A có đường phân giác AD (D thuộc BC) và đường trung tuyến BE (E thuộc AC) cắt nhau tại O

a) Chứng minh: O là trọng tâm tam giác ABC

b) tính độ dài OD biết AB =5cm, BC =8cm

c) Tam giác ABC cần có thêm điều kiện gì để O cũng là giao điểm 3 đường phân giác của Tam giác ABC?

giúp liền là được tiền nèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèèè

3
8 tháng 7 2021

k cái đm l thằng lone trẩu 

8 tháng 7 2021

thương tôi

hãy k tôi

nhìn điểm tôi đi

chán quá

14 tháng 7 2023

AE=ED phải không bạn?

14 tháng 7 2023

A B C D E G

Đề bài phải sửa thành AE=ED

a/

Xét tg ABC

DE//AB (gt)

BD=CD (gt)

=> AE=CE (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) (1)

Mà DE=AE (gt) (2)

Từ (1) và (2) => DE=AE=CE (3)

Ta có

BD=CD (gt); AE=CE (cmt) => DE là đường trung bình của tg ABC

\(\Rightarrow DE=\dfrac{AB}{2}\) (4)

Từ (3) và (4) \(\Rightarrow DE=AE=CE=\dfrac{AB}{2}\)

\(\Rightarrow AE+CE=AB\) Mà \(AE+CE=AC\Rightarrow AB=AC\)

=> tg ABC cân tại A

b/

Xét tg ABC có

AD là trung tuyến (gt)

AE=CE (cmt) => BE là trung tuyến

=> G là trọng tâm của tg ABC (Trong tg 3 đường trung tuyến đồng quy tại 1 điểm gọi là trọng tâm của tg)

 

 

a: BD=3cm

=>AD=4cm

b: Xét ΔABG và ΔACG có

AB=AC

góc BAG=góc CAG

AG chung

=>ΔABG=ΔACG

=>góc ABG=góc ACG

c: G là trọng tâm

=>AG là đường trung tuyến ứng với cạnh BC

=>A,G,D thẳng hàng

CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn...
Đọc tiếp
CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn (O;R), đường kính AB,dây cung BC=R. a)tính các cạnh và các góc chưa biết của tam giác ABC theo R b)đường thẳng qua O vuông góc vs AC cắt tiếp tuyến tại A của đường tròn (O) ở D.chứng minh OD là đường trung trực của đoạn AC.Tam giác ADC là tam giác gì?Vì sao? c)chứng minh DC là tiếp tuyến của đường tròn (O) CÂU 4:cho 2 đường tròn (O) và (O') tiếp xúc ngoài tại A. kẻ tiếp tuyến chung ngoài BC, B thuộc (O),C thuộc (O').Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I a)CMR: GÓC BAC=90 độ b) tính số đo góc OIO' c)tính độ dài BC,biết OA=5cm;O'A=4cm
0
 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)a, Chứng minh: HB=HC và BAH=CAHb, Tính độ dài AHc, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cânBài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CNa, Chứng minh: tam giác ABM = tam giác ACNb, Kẻ BH vuông góc với AM, CK vuông...
Đọc tiếp

 Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)

a, Chứng minh: HB=HC và BAH=CAH

b, Tính độ dài AH

c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân

Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN

a, Chứng minh: tam giác ABM = tam giác ACN

b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK

c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.

a, Chứng minh tam giác ABC là tam giác cân

b, Tính độ dài cạnh đáy BC

c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF

Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:

a, Tam giác ADB= tam giác EDB

b, BD là đường trung trực của AE

c, Tam giác EDC vuông cân

d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng

Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh

a, Tam giác MNF= tam giác MPE

b, Tam giác NSE= tam giác PSE

c, EF // NP

d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng

Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D

a, Chứng minh AD=AE và góc ABD= góc EBD

b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân

c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE

d, Chứng minh 3 điểm F, D,E thẳng hàng

Mình đang cần gấp

1

Bài 3: 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

Do đó; ΔAHB=ΔAKC

Suy ra: AH=AK và BH=CK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

MB=CN

góc M=góc N

Do đó ΔHBM=ΔKCN

Suy ra: góc HBM=góc KCN

=>góc OBC=góc OCB

hay ΔOBC can tại O