Tìm các số nguyên n để : \(\frac{2n-1}{n+8}-\frac{n-14}{n+8}\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{6n+8}{2n+1}=\frac{6n+3+5}{2n+1}=\frac{3.\left(2n+1\right)+5}{2n+1}=3+\frac{5}{2n+1}\) nguyên thì \(\frac{5}{2n+1}\)cũng phải nguyên
=> 5 chia hết cho 2n+ 1 => 2n+1 \(\in\) Ư(5) <=> 2n+1 = {-5;-1;1;5} <=> 2n = {-6;-2;0;4}
<=> n = {-3;-1;0;2} (1)
Để \(\frac{7n^2+5n-8}{n+1}=\frac{7n.n+5n-8}{n+1}=\frac{n.\left(n+7+5\right)-8}{n+1}=\frac{n.\left(n+12\right)-8}{n+1}=\frac{n^2+12n-8}{n+1}\)
\(=\frac{n^2+12n+12-20}{n+1}=\frac{n^2}{n+1}+12-\frac{20}{n+1}\) nguyên thì ...............................
a ) để F thuộc Z
=> \(\frac{n+10}{2n-8}\)thuộc Z
=> n + 10 \(⋮\)2n - 8
=> 2 . ( n + 10 ) \(⋮\)2n - 8
=> 2n + 20 \(⋮\)2n - 8
=> 2n - 8 + 28 \(⋮\)2n - 8 mà 2n - 8 \(⋮\)2n - 8 => 28 \(⋮\)2n - 8
=> 2n - 8 thuộc Ư ( 28 ) = { - 28 ; - 14 ; - 7 ; - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
=> n thuộc { - 10 ; - 3 ; 2 ; 3 ; 5 ;6 ; 11 ; 18 }
Cho phân số \(A=\frac{2n+8}{n+1}\)(n \(\varepsilon\)N) . Tìm các số tự nhiên n để A là số nguyên tố.
để A là số nguyên tố thì phải đảm bảo A thuộc N
để A thuộc N
=> 2n + 8 chia hết cho n + 1
=> 2.(n + 1) + 6 chia hết cho n+ 1
=> 6 chia hết cho n +1
=> n+ 1 \(\in\) Ư(6 ) = {1;2;3;6}
=> n+1 =1 => n = 0
n+1 = 2 => n = 1 (snt)
n+1 =3 => n = 2 (sgt)
n + 1 = 6 => n = 5 (snt)
=> n = {1;2;5}
ta có \(A=\frac{-24}{n}+\frac{17}{n}=\frac{\left(-24\right)+17}{n}=\frac{-7}{n}\)
\(\Rightarrow n\inƯ\left(-7\right)=\left\{-7,-1,1,7\right\}\)
\(\Rightarrow n=-7;n=-1;n=1;n=7\) để A là số nguyên
\(B=\frac{n-8}{n+1}+\frac{n+3}{n+1}=\frac{n-8+n+3}{n+1}=\frac{2n-5}{n+1}=\frac{2n+2-6}{n+1}=2-\frac{7}{n+1}\)
\(\Rightarrow n+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
nếu \(n+1=-7\Rightarrow n=-8\)
\(n+1=-1\Rightarrow n=-2\)
\(n+1=1\Rightarrow n=0\)
\(n+1=7\Rightarrow n=6\)
vậy \(n\in\left\{-8;-2;0;6\right\}\)để B là số nguyên
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)
\(=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}\inℤ\Leftrightarrow\frac{5}{n+8}\inℤ\)
mà \(n\inℤ\)nên \(n+8\)là ước của \(5\)suy ra \(n+8\in\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-13,-9,-7,-3\right\}\).
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{n+13}{n+8}=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}.\)
Để biểu thức là số nguyên thì n+8 là ước của 5
\(\Rightarrow n+8=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-13;-9;-7;-3\right\}\)