Tìm x:
\(\dfrac{-4}{15}< \dfrac{5x-1}{18}< \dfrac{5}{12}\)
Giải giúp theo cách lớp 6 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-3}{10}-\dfrac{x-3}{15}=\dfrac{x-3}{12}-\dfrac{x-3}{18}\)
\(\Rightarrow\dfrac{x-3}{1}-\dfrac{x-3}{15}-\dfrac{x-3}{12}+\dfrac{x-3}{18}=0\)
\(\Rightarrow\left(x-3\right)\left(1-\dfrac{1}{15}-\dfrac{1}{12}+\dfrac{1}{18}\right)=0\)
Mà \(1-\dfrac{1}{15}-\dfrac{1}{12}+\dfrac{1}{18}\ne0\)
\(\Rightarrow x-3=0\Leftrightarrow x=3\)
\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)x-2-5(x+1)=15
\(\Leftrightarrow\) x-2-5x-5=15
\(\Leftrightarrow\)x-5x=15+2+5
\(\Leftrightarrow\)-4x=22
\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)
vậy
1: Ta có: \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow5x+1-2\left(x-2\right)=4\)
\(\Leftrightarrow5x+1-2x+4=4\)
\(\Leftrightarrow3x=-1\)
hay \(x=-\dfrac{1}{3}\)
2: Ta có: \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)
\(\Leftrightarrow9x+27+12-36x=-2x+2\)
\(\Leftrightarrow-27x+2x=2-39\)
hay \(x=\dfrac{37}{25}\)
3: Ta có: \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x+6-10x=4-4x\)
\(\Leftrightarrow-7x+4x=4-6=-2\)
hay \(x=\dfrac{2}{3}\)
4: Ta có: \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)
\(\Leftrightarrow5x-15-x-1=2x-4\)
\(\Leftrightarrow4x-2x=-4+16=12\)
hay x=6
5: Ta có: \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)
\(\Leftrightarrow12x+3-9x+5+4x-8=0\)
\(\Leftrightarrow7x=0\)
hay x=0
\(\frac{5-2x}{6}>\frac{5x-2}{3}\)
\(\Leftrightarrow\frac{5-2x}{6}>\frac{10x-4}{6}\)
\(\Leftrightarrow-2x-10x>-4-5\)
\(\Leftrightarrow-12x>-9\)
\(\Leftrightarrow x< \frac{3}{4}\)
a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b) Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+4x-5}{2\left(x+5\right)}\)
\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)
\(=\dfrac{x-1}{2}\)
Để B=0 thì \(\dfrac{x-1}{2}=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(nhận)
Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x-1=\dfrac{1}{2}\)
hay \(x=\dfrac{3}{2}\)(nhận)
Vậy: Để B=0 thì x=1 và Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)
1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)
Suy ra: \(5x^2+3x-9=5x^2-5x\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(tm\right)\)
2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)
\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(6x=3x-15\)
\(\Leftrightarrow3x=-15\)
hay \(x=-5\left(loại\right)\)
2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)
\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)
Vậy pt vô nghiệm.
Ta có: \(\dfrac{-4}{15}< \dfrac{5x-1}{18}< \dfrac{5}{12}\)
\(\Leftrightarrow\dfrac{-48}{180}< \dfrac{10\left(5x-1\right)}{180}< \dfrac{75}{180}\)
Suy ra: \(-48< 10\left(5x-1\right)< 75\)
\(\Leftrightarrow10\left(5x-1\right)\in\left\{-40;-30;-20;-10;0;10;20;30;40;50;60;70\right\}\)
\(\Leftrightarrow5x-1\in\left\{-4;-3;-2;-1;0;1;2;3;4;5;6;7\right\}\)
\(\Leftrightarrow5x\in\left\{-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
\(\Leftrightarrow x\in\left\{0;1\right\}\)(Vì x nguyên)