Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Tính AM?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
Lời giải:
\(\overrightarrow{AC}.\overrightarrow{BI}=(\overrightarrow{AM}+\overrightarrow{MC})(\overrightarrow{BM}+\overrightarrow{MI})\)
\(=\overrightarrow{AM}.\overrightarrow{BM}+\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}+\overrightarrow{MC}.\overrightarrow{MI}\)
\(=\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}\)
\(=\overrightarrow{AM}.\frac{-\overrightarrow{AM}}{2}+\frac{\overrightarrow{BC}}{2}.\overrightarrow{BC}=\frac{BC^2-AM^2}{2}\)
\(=\frac{BC^2-(\frac{\sqrt{3}}{2}BC)^2}{2}=\frac{BC^2}{8}=\frac{9a^2}{8}\)
\(\left|\overrightarrow{AM}\right|=AM=\dfrac{a\sqrt{3}}{2}\)
Có \(AM^2=\dfrac{2\left(AB^2+AC^2\right)-BC^2}{4}=\dfrac{2\left(a^2+a^2\right)-a^2}{4}=\dfrac{3a^2}{4}\)
\(\Rightarrow AM=\dfrac{\sqrt{3}a}{2}\)
Vì \(\Delta\) ABC đều mà M là trung điểm BC \(\Rightarrow\) AM là đường cao của \(\Delta\) ABC\(\Rightarrow\)AM\(\perp\)BC
Theo giả thiết BC = a \(\Rightarrow\)\(AM =\dfrac{a}{2}\)
Áp dụng định lý Py-ta-go vào tam giác vuông AMB có:
\(AB^{2}=AM^{2}+BM^{2}\)
\(\Rightarrow\)\(AM^{2}=AB^{2}-BM^{2}\)
\(\Rightarrow\)\(AM^{2}=a^{2}-\dfrac{a}{2}^{2}\)
\(\Rightarrow\)\(AM=\dfrac{\sqrt{3a}^{}}{2}\)