Cho tam giác ABC vuông tại A, có AH là đường cao. Biết AB=3 căn 3, CH=6. tính AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=25/7
=>BD=75/7cm; CD=100/7cm
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
c: AI*AB=AK*AC
=>AI/AC=AK/AB
=>ΔAIK đồng dạng với ΔACB
A B C H N M 3 4
Xét \(\Delta HAC\)vuông tại H có HN là đường trung tuyến ứng với cạnh huyền
=> HN = NC = NA = AC/2
=> AC = 2HN = 8
Tương tự AB = 6
Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)
\(\Leftrightarrow AH=\frac{24}{5}\)
Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có
\(HA^2+HC^2=AC^2\)
\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)
\(\Leftrightarrow HC=\frac{32}{5}\)
Tương tự \(HB=\frac{18}{5}\)
Sửa đề: BC=29cm
Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)
nên \(AB=\dfrac{20}{21}AC\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(\dfrac{20}{21}AC\right)^2+AC^2=29^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{841}{441}=841\)
\(\Leftrightarrow AC^2=441\)
hay AC=21(cm)
Ta có: \(AB=\dfrac{20}{21}AC\)(cmt)
nên \(AB=\dfrac{20}{21}\cdot21=20\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=20+21+29=70\left(cm\right)\)
H ở đây là điểm nào em nhỉ?
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\)
\(\Leftrightarrow AB^2=BH\left(BH+CH\right)\)
\(\Leftrightarrow27=BH\left(BH+6\right)\)
\(\Leftrightarrow BH^2+6BH-27=0\Rightarrow\left[{}\begin{matrix}BH=3\\BH=-9< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow BC=BH+CH=9\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=3\sqrt{6}\)