K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2023

a) Ta có hình thang vuông ABCD, nên ta có: AB^2 + BC^2 = AC^2 AD^2 + DC^2 = AC^2

Vì AB = 15cm, AD = 20cm và ABCD là hình thang vuông, nên ta có: 15^2 + BC^2 = AC^2 20^2 + DC^2 = AC^2

Vì 2 đường chéo AC và BD vuông góc tại O, nên ta có: OB^2 + BC^2 = OC^2 OD^2 + DC^2 = OC^2

Vì ABCD là hình thang vuông, nên ta có: OB^2 + BC^2 = OD^2 + DC^2

Từ hai phương trình trên, ta có thể suy ra OB = OD.

b) Ta có thể tính đường chéo AC bằng cách sử dụng định lí Pythagoras trên tam giác vuông AOC: AC^2 = AO^2 + OC^2

Vì OB = OD, nên ta có AO = OD = OB.

Vậy, ta có: AC^2 = OB^2 + OC^2

c) Để tính diện tích SABCD, ta có thể sử dụng công thức

a: ΔABD vuông tại A

=>BD^2=AB^2+AD^2=625

=>BD=25cm

ΔABD vuông tại A có AO là đường cao

nên BO*BD=BA^2 và DO*DB=DA^2 và AO^2=OD*OB

=>BO=15^2/25=9cm; DO=20^2/25=16cm; AO^2=9*16=144

=>AO=12cm

b: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có

góc OAB=góc OCD

=>ΔOAB đồng dạng với ΔOCD

=>OA/OC=OB/OD

=>9/16=12/OC

=>OC=16*12/9=16*4/3=64/3cm

AC=12+64/3=100/3cm

c: \(S_{ABCD}=\dfrac{1}{2}\cdot AC\cdot BD=\dfrac{1}{2}\cdot\dfrac{100}{3}\cdot25=\dfrac{50}{3}\cdot25=\dfrac{1250}{3}\left(cm^2\right)\)

6 tháng 12 2018

ta có: góc D1 + D2 =90

mà D1 + C1 =90

=>D2=C1

xét tam giác ABD và DAC có

    BAD=ADC

    D2=C1(cmt)

=>ABD đồng dạng DAC (g-g)

=>AB/AD=AD/DC

<=>AD^2=AB.DC(1)

b) Bạn áp dung CT(1) tính AD sau đó tính DT abcd

c) Dựa vào hệ thức lượng trong tam giác vuông:

1/OA^2=1/ab^2 + 1/ad^2  =>OA=...

tính AC,BD bằng Pytago

OC= AC-OA

OD^2=OA*OC  =>OD=....

OB=BD-OD

Chúc bạn học tốt !

6 tháng 12 2018

A B C D O 1 2 1

19 tháng 2 2018

a, Áp dụng các hệ thức lượng trong tam giác vuông ABD, tính được BD = 25cm, OB = 9cm, OD = 16cm

b, Áp dụng các hệ thức lượng trong tam giác vuông DAC tính được OA = 12cm, AC = 100 3 cm

c, Tính được S =  1250 3 c m 2

2 tháng 7 2021

undefined

2 tháng 7 2021

undefined