Cho B=\(\dfrac{\sqrt{x}-1}{2x+2-2x\sqrt{x}}\)
a)Tính B khi x=\(6+2\sqrt{5}\)
b)tìm x nguyên để b nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(x=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\) \(\Rightarrow\sqrt{x}=\sqrt{5}+1\)
\(\Rightarrow B=\dfrac{\sqrt{5}+1-1}{2+\sqrt{5}+1}=\dfrac{\sqrt{5}}{\sqrt{5}+3}=\dfrac{3\sqrt{5}-5}{4}\)
b.
\(B=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
B nguyên \(\Rightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Rightarrow\sqrt{x}+2=Ư\left(3\right)\)
Mà \(\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=3\)
\(\Leftrightarrow\sqrt{x}=1\Rightarrow x=1\)
a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:
\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)
b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)
c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)
hay \(x\in\left\{16;25;64\right\}\)
a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)
P=A*B
\(=\dfrac{x-7}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{x-7}{\sqrt{x}+2}\)
P nguyên
=>x-4-3 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-3)
=>căn x+2=3
=>x=1
a: Thay x=36 vào B, ta được:
\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)