Bài 3: Tìm Min:
b) B=|x|+|x-4|+12.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
Bài 3:
Gọi số nhóm là x
Theo đề, ta có: \(x\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
mà 2<x<6
nên \(x\in\left\{3;4\right\}\)
Vậy: Có 2 cách chia nhóm
a) 25 - x = 12 + 6 =18
x=25-18=7 Vậy x=7
b) 7 + 2 x ( x -3 ) = 11
2.(x-3)=11-7=4
x-3=4:2=2
x=3+2=5
c) 102 : ( 2.x + 13) : 4) = 6
(2.x+13):4=102:6=17
2.x+13=17.4=68
2.x=68-13=55
x=27,5 Vậy x=27,5
Bài 3:
Gọi số nhóm là x
Theo đề, ta có: x∈{1;2;3;4;6;9;12;18;36}x∈{1;2;3;4;6;9;12;18;36}
mà 2<x<6
nên x∈{3;4}x∈{3;4}
Vậy: Có 2 cách chia nhóm
còn bài 1 chắc bn làm đc nha tick mk nha
Bài 1:
a. $(-20)+x=-30$
$x-20=-30$
$x=-30+20=-(30-20)=-10$
b.
$(-10)-x=-20$
$x=(-10)-(-20)=-10+20=20-10=10$
c. Đề sai. Bạn xem lại.
d.
$x+(-3)=-7$
$x=-7-(-3)=-7+3=-(7-3)=-4$
e.
$x-(-5)=-9$
$x=(-9)+(-5)=-14$
f.
$x(-11)=12$
$x=\frac{12}{-11}=\frac{-12}{11}$
h.
$2x-10=20$
$2x=20+10=30$
$x=30:2=15$
l.
$4x-8=-8$
$4x=-8+8=0$
$x=0:4=0$
k.
$-12-(-2)x=-8$
$(-2)x=-12-(-8)=-12+8=-(12-8)=-4$
$x=(-4):(-2)=2$
Bài 2:
a. $-20-(10-x)=-3$
$10-x=-20-(-3)=-20+3=-(20-3)=-17$
$x=10-(-17)=10+17=27$
b.
$14+(14-x)=-2$
$14-x=-2-14=-16$
$x=14-(-16)=14+16=30$
c.
$-15-(x-3)=-7$
$x-3=-15-(-7)=-15+7=-8$
x=-8+3=-5$
d.
$(x+4)+(-20)=-8$
$x+4=-8-(-20)=-8+20=12$
$x=12-4=8$
e.
$-2x-2=-4$
$-2x=-4+2=-2$
$x=(-2):(-2)=1$
f.
$-2x+4=-4$
$-2x=-4-4=-8$
$x=(-8):(-2)=4$
l.
$-12-(-2)x=-2-4=-6$
$(-2)x=-12-(-6)=-12+6=-6$
$x=(-6):(-2)=3$
a.3-(-12+3)+x=x-(-12-10)
<=> 3+9+x=x+22
<=>x-x=22-3-9
<=> 0x=10
b,2-x=14-(x+4)
<=>2-x=14-x-4)
<=>x-x=14-4-2
<=>0x=8
c.x-12=14+(6-x)
<=>x-12=14+6-x
<=>x+x=14+6+12
<=>0x=32
Hôm nay olm.vn sẽ hướng dẫn các em cách giải dạng bài như này.
Gặp những dạng toán nâng cao như này thì các em cần tìm \(x\) dưới dạng tổng quát em nhé. Học toán tập hợp là để giải toán dạng này đó em
Bài 3: a, 12 + 36 + 24 + \(x\) = 72 + \(x\)
72 + \(x\) ⋮ 6 ⇔ \(x\) ⋮ 6 ⇒ \(x\in\) A = { \(x\in\) Z/ \(x\) = 6k; k \(\in\) Z}
b, 72 + \(x\) không chia hết cho 6 ⇒ \(x\) không chia hết cho 6
⇒ \(x\) \(\in\) A = { \(x\) \(\in\) z/ \(x\) = 6k + q; k \(\in\) Z; q \(\in\) Z; q \(\ne\)0}
Bài 4: \(x\).9 ⋮3 vì 9 ⋮ 3 ⇒ \(x.9\) ⋮ 3 ∀ \(x\) \(\in\) Z Vậy \(x\) \(\in\) Z
Bài 4:
a: xy=-2
=>\(x\cdot y=1\cdot\left(-2\right)=\left(-2\right)\cdot1=\left(-1\right)\cdot2=2\cdot\left(-1\right)\)
=>\(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)
b: \(\left(x-1\right)\left(y+2\right)=-3\)
=>\(\left(x-1\right)\cdot\left(y+2\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1=-1\cdot3=3\cdot\left(-1\right)\)
=>\(\left(x-1;y+2\right)\in\left\{\left(1;-3\right);\left(-3;1\right);\left(-1;3\right);\left(3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-5\right);\left(-2;-1\right);\left(0;1\right);\left(4;-3\right)\right\}\)
Bài 3:
a: \(x\left(x+9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+9=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b: \(\left(x-5\right)^2=9\)
=>\(\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3+5=8\\x=-3+5=2\end{matrix}\right.\)
c: \(\left(7-x\right)^2=-64\)
mà \(\left(7-x\right)^2>=0\forall x\)
nên \(x\in\varnothing\)
Bài 2:
a: \(\left(-31\right)\cdot x=-93\)
=>\(31\cdot x=93\)
=>\(x=\dfrac{93}{31}=3\)
b: \(\left(-4\right)\cdot x=-20\)
=>\(4\cdot x=20\)
=>\(x=\dfrac{20}{4}=5\)
c: \(5x+1=-4\)
=>\(5x=-4-1=-5\)
=>\(x=-\dfrac{5}{5}=-1\)
d: \(-12x+1=-4\)
=>\(-12x=-4-1=-5\)
=>\(12x=5\)
=>\(x=\dfrac{5}{12}\)
Bài 1:
a) \(\dfrac{9}{20}-\dfrac{8}{15}\times\dfrac{5}{12}\)
\(=\dfrac{9}{20}-\dfrac{2}{9}\)
\(=\dfrac{41}{180}\)
b) \(\dfrac{2}{3}\div\dfrac{4}{5}\div\dfrac{7}{12}\)
\(=\dfrac{2}{3}\times\dfrac{5}{4}\times\dfrac{12}{7}\)
\(=\dfrac{5}{6}\times\dfrac{12}{7}\)
\(=\dfrac{10}{7}\)
c) \(\dfrac{7}{9}\times\dfrac{1}{3}+\dfrac{7}{9}\times\dfrac{2}{3}\)
\(=\dfrac{7}{9}\times\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{7}{9}\times1\)
\(=\dfrac{7}{9}\)
Bài 2:
a) \(2\times\left(x-1\right)=4026\)
\(\left(x-1\right)=4026\div2\)
\(x-1=2013\)
\(x=2014\)
Vậy: \(x=2014\)
b) \(x\times3,7+6,3\times x=320\)
\(x\times\left(3,7+6,3\right)=320\)
\(x\times10=320\)
\(x=320\div10\)
\(x=32\)
Vậy: \(x=32\)
c) \(0,25\times3< 3< 1,02\)
\(\Leftrightarrow0,75< 3< 1,02\) ( S )
=> \(0,75< 1,02< 3\)
bài 1 tính giá trị biểu thức
( - 25 ) nhân ( -3 ) nhân x với x = 4
\(\left(-25\right).\left(-3\right).4\)
\(=\left(-25\right).4.\left(-3\right)\)
\(=-100.\left(-3\right)=300\)
( -1 ) nhân ( -4 ) nhân 5 nhân 8 nhân y với y =25
\(\left(-1\right).\left(-4\right).5.8.25\)
\(=4.5.8.25=4.25.5.8\)
\(=100.40=40000\)
( 2ab mũ 2 ) : c với a =4 ; b= -6 ; c =12
\(\left(2.4.\left(-6\right)\right)^2:12\)
\(=\left(-48\right)^2:12\)
\(=2304:12=192\)
[ ( -25 ) nhân ( - 27 ) nhân ( -x ) ] : y với x = 4 ; y = -9
\(\left[\left(-25\right).\left(-27\right).\left(-4\right)\right]:-9\)
\(=-2700:\left(-9\right)\)
\(=300\)
(a mũ 2 _ b mũ 2) : ( a + b ) nhân ( a _ b ) với a + 5 , b = -3
\(\left(5^2-\left(-3\right)^2\right):\left(5-3\right).\left(5+3\right)\)
\(=16:2.8\)
\(=8.8=64\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$B=|x|+|4-x|+12\geq |x+4-x|+12=4+12=16$
Vậy GTNN của $B$ là $16$. Giá trị này đạt tại $x(4-x)\geq 0$
$\Leftrightarrow 0\leq x\leq 4$