K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sqrt{2}\left(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\right)\)

\(=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{5}-1-\sqrt{5}-1=-2\)

b) Ta có: \(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)

\(=\sqrt{13+30\sqrt{2}+2\sqrt{2}+1}\)

\(=\sqrt{14+32\sqrt{2}}\)

c) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{13+\sqrt{48}}}\)

\(=\sqrt{6+2\sqrt{5}-2\sqrt{3}-1}\)

\(=\sqrt{5+2\sqrt{5}-2\sqrt{3}}\)

9 tháng 7 2021

a)\(\sqrt{25}+\sqrt{9}=5+3=8\)

\(\sqrt{25+9}=\sqrt{36}=6\)

Do \( 8>6\)

\(\Rightarrow\)\(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)

9 tháng 7 2021

undefined

a: \(P=-5\sqrt{\dfrac{160}{90}}=-5\cdot\dfrac{4}{3}=-\dfrac{20}{3}\)

b: \(Q=\sqrt{a}-\sqrt{b}+2\sqrt{b}=\sqrt{a}+\sqrt{b}\)

20 tháng 7 2016

Bạn xem lại đề bài nhé :)

Nhận xét : Với \(x\ge0\), ta có \(x=\sqrt{x^2}\)

Đặt \(x=\sqrt{A-\sqrt{B}}+\sqrt{A+\sqrt{B}}\), ta có \(x\ge0\), từ nhận xét suy ra \(x=\sqrt{x^2}\)

Ta có : \(x^2=2A+2\sqrt{A^2-B}=4\left(\frac{A+\sqrt{A^2-B}}{2}\right)\)

\(\Rightarrow x=2\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\)(1). Tương tự, đặt \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\).

Xét : \(A+\sqrt{B}-\left(A-\sqrt{B}\right)=2\sqrt{B}>0\Leftrightarrow A+\sqrt{B}>A-\sqrt{B}\)

\(\Leftrightarrow\sqrt{A+\sqrt{B}}>\sqrt{A-\sqrt{B}}\Rightarrow y>0\). Áp dụng nhận xét, ta cũng có \(y=\sqrt{y^2}\)

Ta có : \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\Leftrightarrow y=2A-2\sqrt{A^2-B}=4\left(\frac{A-\sqrt{A^2-B}}{2}\right)\)

\(\Rightarrow y=2\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\) (2)

Cộng (1) và (2) theo vế : \(x+y=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)

\(2\sqrt{A+\sqrt{B}}=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)

\(\Leftrightarrow\sqrt{A+\sqrt{B}}=\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\)(đpcm)

20 tháng 7 2016

ta thấy A + phân A thì sẽ tự làm

17 tháng 6 2021

`(asqrtb-bsqrta)/sqrt{ab}-(a-b)/(sqrta-sqrtb)`

`=(sqrt{ab}(\sqrta-sqrtb))/sqrt{ab}-((sqrta-sqrtb)(sqrta+sqrtb))/(sqrta-sqrtb)`

`=sqrta-sqrtb-(sqrta-sqrtb)`

`=-2sqrtb`

17 tháng 6 2021

`(a\sqrtb-b\sqrta)/(\sqrt(ab)) -(a-b)/(\sqrta-\sqrtb)`

`=(\sqrt(ab) (\sqrta-\sqrtb))/(\sqrt(ab)) - ((\sqrta-\sqrtb)(\sqrta+\sqrtb))/(\sqrta-\sqrtb)`

`=(\sqrta-\sqrtb) - (\sqrta+\sqrtb)`

`=-2\sqrtb`

8 tháng 8 2020

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Leftrightarrow2c+2\sqrt{ab+bc+ca+c^2}=0\)

Theo giả thiết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)

Khi đó \(c=0?\)

Nhầm chỗ nào nhắc mình với nha mình cảm ơn nhiều

9 tháng 8 2020

mình vẫn không phát hiện bạn nhầm chỗ nào

16 tháng 8 2019

Bạn tham khảo câu này nhé: 

https://olm.vn/hoi-dap/detail/210792556876.html

17 tháng 8 2019

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :

\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(2\left(a+b+c\right)\right)=6\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2023

b) \(B=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(B=\left[\dfrac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}\right]:\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(B=\left[\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\right]:\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(B=\left(a-\sqrt{ab}+\sqrt{b}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(B=\dfrac{a-\sqrt{ab}+b}{a-b}+\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(B=\dfrac{a-\sqrt{ab}+b}{a-b}+\dfrac{2\sqrt{ab}-2b}{a-b}\)

\(B=\dfrac{a-\sqrt{ab}+b+2\sqrt{ab}-2b}{a-b}\)

\(B=\dfrac{a+\sqrt{ab}-b}{a-b}\)

8 tháng 8 2023

a) \(\sqrt{2}A=\sqrt{2x-2\sqrt{x-2}.\sqrt{x+2}}+\sqrt{2x+2\sqrt{x-2}.\sqrt{x+2}}\) (\(x\ge2\) )

\(=\sqrt{\left(x+2\right)-2\sqrt{x+2}.\sqrt{x-2}+\left(x-2\right)}+\sqrt{\left(x+2\right)+2\sqrt{x+2}.\sqrt{x-2}+\left(x-2\right)}\)

\(=\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}\)

\(=\left|\sqrt{x+2}-\sqrt{x-2}\right|+\sqrt{x+2}+\sqrt{x-2}\)

\(=\sqrt{x+2}-\sqrt{x-2}+\sqrt{x+2}+\sqrt{x-2}\) ( do \(x+2>x-2\ge0\Leftrightarrow\sqrt{x+2}>\sqrt{x-2}\) )

\(=2\sqrt{x+2}\)

\(\Leftrightarrow A=\sqrt{2}.\sqrt{x+2}\)

Vậy...

b) \(B=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) 

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}.\dfrac{1}{a-b}+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{a-\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{a-\sqrt{ab}+b+2\sqrt{ab}-2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{a+\sqrt{ab}-b}{a-b}\)

Vậy...

\(a)\) \(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=a-b\)

\(b)\) \(B=a-b=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)\(\Rightarrow\)\(B^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)

\(B^2=4-2\sqrt{4-3}=4-2=2\)\(\Rightarrow\)\(B=\sqrt{2}\) ( vì \(B>0\) ) 

... 

19 tháng 12 2018

cảm ơn nhe <3 :))