K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

a. mọi a thuộc Z

b. ko có a

c. a \(\in\left\{-1;0;1\right\}\)

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

24 tháng 12 2019

Ta có:  x + y = a 2 + a + 1 x - y = - a 2 + a - 1 ⇔ x + y = a 2 + a + 1 2 x = 2 a ⇔ y = a 2 + 1 x = a

Do đó 3 x + y = a 2 + 3 a + 1 = a + 3 2 2 - 5 4 ≥ - 5 4 . Dấu bằng xảy ra khi  a = - 3 2 .

7 tháng 11 2021

C

7 tháng 11 2021

c

17 tháng 9 2021

\(M=a^2+ab+b^2-3a-3b+2001\)

\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)

\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)

\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)

\(\Rightarrow M\ge1998\)

\(minM=1998\Leftrightarrow a=b=1\)

17 tháng 9 2021

thanks

23 tháng 2 2019

\(2M=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+2.1998\ge2.1998\Rightarrow M\ge1998\)

Dấu \("="\) xảy ra khi đồng thời : \(\hept{\begin{cases}a+b-2=0\\a-1=0\\b-1=0\end{cases}}\)         Vậy  min \(M=1998\Rightarrow a=b=1\)

2 tháng 7 2019

Điều kiện x ≠ 2 và x  ≠  0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x - 1 2 ≥ 0 nên x - 1 2 + 2 ≥ 2 với mọi giá trị của x.

Khi đó giá trị nhỏ nhất của biểu thức bằng 2 khi x = 1.

Vậy biểu thức đã cho có giá trị nhỏ nhất bằng 2 tại x = 1.

16 tháng 1 2017

Điều kiện x ≠ -2 và x  ≠  0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x + 1 2 ≥ 0 nên - x + 1 2 ≤ 0 ⇒ - x + 1 2 - 1 ≤ - 1

Khi đó biểu thức có giá trị lớn nhất bằng -1 khi x = -1

Vậy biểu thức đã cho có giá trị lớn nhất bằng -1 tại x = -1.

20 tháng 9 2021

\(A=a^2\left(a+b\right)-b\left(a^2+b^2\right)+2013\)

Thay a=1;b=-1 vào biểu thức A ta có:

\(A=1\left(1+\left(-1\right)\right)-\left(-1\right)\left(1-1\right)+2013\)

\(=0-0+2013\)

\(=2013\)