Cho tổng: 1+ 2+ 3+ ... +1988+ 1989, 1990! Hãy xóa đi hai số bất kỳ và thay vào đó là hiệu của chúng. Chứng minh rằng dù có thực hiện liên tiếp quá trình này bao nhiêu lần thì kết quả còn lại bao giờ cũng là một số 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài tương tự :
Người ta viết lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là hiệu của chúng . Cho đến khi trên bảng chỉ còn một số thì người ta viết thêm lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là tổng của chúng . Cho đến khi trên bảng chỉ còn một số thì người ta viết thêm lên bảng các số từ 1 đến 2015 . Sau đó , mỗi người được phép xóa 2 số bất kỳ trên bảng và thay vào đó là một số mới là hiệu của chúng . . .
Người ta làm như vậy cả thảy 2015 lần . Hỏi số cuối cùng còn lại trên bảng có phải là số 0 không ? Vì sao ?
Có thể là có. Bởi vì khi bạn xóa 2 số cuối thì được hiệu là 1 (vì là 2014 và 2015), rồi 2 số 2011 và 2013, 2012 và 2009,... thì bạn sẽ ra được hiệu là 1,2,3,4,... và ra hiệu là 0 với các số 1,2,3,4,... cho sẵn.
Có thể đấy, ví dụ xóa 2015 với 1 viết lại 2014 thì trong dãy vẫn còn 2014 vẫn bằng 0 được
Nhận xét. Sau mỗi lần thực hiện trò chơi thì trên bảng giảm đi một số (xóa 2 số cũ và viết thêm 1 số mới). Sau 9 lần thì trên bảng còn đúng 1 số. Thử chơi: xóa cặp số 9, 10 và thay bằng hiệu 1. Tương tự như các cặp số 1, 2 hoặc 3, 4 hoặc 5, 6 hoặc 7, 8 thì sau 5 lần thực hiện trò chơi, trên bảng còn lại 5 số 1. Thử tiếp 2 lần cặp 1, 1 ta còn 3 số trên bảng là 0, 0, 1. Sau 2 lần chơi nữa ta được số còn lại là 1, khác 0. Vậy bất biến ở đây là gì?
Giải. Tổng 10 số ban đầu là S = 1 + 2 +... + 10 = 55.
Mỗi lần chơi xóa đi hai số a và b bất kỳ rồi viết lên bảng số a - b, ta thấy a + b = (a - b) + 2b. Nghĩa là số mới viết bé hơn tổng hai số vừa xóa là 2b, là một số chẵn. Tức là sau mỗi lần chơi, tổng các số trên bảng luôn là số lẻ. Vậy số cuối cùng cũng là số lẻ.
Chúc bạn học tốt!