Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên AM lấy điểm D sao cho MD=MA. Chứng minh:
a.Tam giác ABM bằng tam giác DCM
b.Tam giác BCD vuông
c.Góc ABD bằng góc ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔFMC
=>EM=FM
=>M là trung điểm của EF
a, xét tam giác CMD và tam giác BMA có : AM = MD (gt)
MB = MC do M là trung điểm của BC (Gt)
góc CMD = góc AMB (đối đỉnh )
=> tam giác CMD = tam giác BMA (c - g - c)
=> góc ABM = góc DCM (định nghĩa)
b, góc ABM = góc DCM (Câu a) mà 2 góc này so le trong
=> CD // AB (đl)
mà CA _|_ AB do tam giác ABC vuông tại A (gt)
=> CA _|_ CD (dl)
=> góc ACD = 90 (đn)
=> tam giác ACD vuông tại C (đn)
c, xét tam giác ABC và tam giác CDA có : AC chung
góc ABC = góc CDA = 90
AB = CD do tam giác CMD = tam giác BMA (câu a)
=> tam giác ABC = tam giác CDA (2cgv)
=> AD = CB (đn)
M là trung điểm của CB => CM = 1/2BC
CM = MA
do tam giác CMD = tam giác BMA (Câu a)
=> MA = 1/2BC
d,
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>ΔACD vuông tại C
b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có
KC=KA
CD=AB
=>ΔKCD=ΔKAB
=>KD=KB
a) 2 tam giác = nhau theo tường hợp cạnh góc cạnh (tự chứng minh)
b) Tam giác BCD= tam giác CBA theo trường hợp cạnh góc cạnh (tự chứng minh)
=> góc ADC= góc BAC = 90 độ
=> tam giác BDC vuông
c)Tam giác ABD = tam giác ACD theo trường hợp cạnh cạnh cạnh
=> góc ABD = góc ACD
Đặng Phương Thảo mà bạn ơi mình hỏi là trên tia AM lấy điểm C sao cho MD=MA bạn vẽ hình làm sao?? Giups mình đi