K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

\(A=\sqrt{12+\sqrt{12+\sqrt{12}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{12+\sqrt{12+\sqrt{16}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}\)\(=7\)

\(B=\sqrt{14}+\sqrt{11}>\sqrt{13,69}+\sqrt{10,89}=7\)

\(\Rightarrow A< B\)

6 tháng 7 2021

Ta có:

 \(12< 16\Rightarrow\sqrt{12}< \sqrt{16}=4\\ 6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)

\(\Rightarrow A< \sqrt{12+\sqrt{12+4}}+\sqrt{6+\sqrt{6+\sqrt{6+3}}}=\sqrt{12+4}+\sqrt{6+3}=4+3=7\) (1)

Lại có :

\(B=\sqrt{14}+\sqrt{11}\Rightarrow B^2=25+2\sqrt{14.11}=25+2\sqrt{154}>25+2\sqrt{144}=25+2.12=49=7^2\)

Mà B > 0

\(\Rightarrow B>7\) (2)

Từ (1),(2) suy ra A<B

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
a.

\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)

$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$

$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$

b.

$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$

$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$

$=|\sqrt{3}-3|+|\sqrt{3}+3|$

$=(3-\sqrt{3})+(\sqrt{3}+3)=6$

c.

$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$

$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$

$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$

22 tháng 9 2018

    3.991546341         >                   2.997403267

chuc 1 bạn học tốt

22 tháng 9 2018

\(6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)

\(\Rightarrow\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+3}}}\)

\(=\sqrt{6+\sqrt{6+3}}\)\(=\sqrt{6+3}\)\(=3\)

\(12>9\Rightarrow\sqrt{12}>\sqrt{9}=3\)

\(\Rightarrow\sqrt{12+\sqrt{12+\sqrt{12}}}>\sqrt{12}>3\)

\(\Rightarrow\sqrt{12+\sqrt{12+\sqrt{12}}}>\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}\)

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

10 tháng 10 2021

\(A=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)

\(B=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

mà \(\sqrt{12}+\sqrt{11}< \sqrt{14}+\sqrt{13}\)

nên A>B

3 tháng 10 2021

\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)

bạn giải chi tiết giúp mk đc k ạ

 

31 tháng 10 2018

ghi de sai ban oi

31 tháng 10 2018

\(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)

\(A< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=24=B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

12 tháng 10 2023

a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)

\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)

b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}+3-\sqrt{2}=6\)

c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

12 tháng 10 2023

a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)

b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}+3-\sqrt{2}=6\)

c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)