K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

10 tháng 4 2018

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^

18 tháng 8 2019

Cauchy Schwars 

\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)

18 tháng 8 2019

\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

Vay \(M_{min}=9\)

8 tháng 8 2015

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)

20 tháng 12 2016

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:

\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{1+a^2+b^2+2ab}\)

\(=\frac{4}{1+\left(a+b\right)^2}=\frac{4}{1+1}=2\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_A=2\) khi \(a=b=\frac{1}{2}\)

23 tháng 12 2016

Bất phương trình và hệ bất phương trình một ẩn

24 tháng 10 2020

Ta có:

\(\frac{1}{a+2}+\frac{3}{b+4}\le1-\frac{2}{c+3}\)

\(\Rightarrow1-\frac{1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\)

\(\Leftrightarrow\frac{a+1}{a+2}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\left(1\right)\)

Tương tự : \(1-\frac{3}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\Leftrightarrow\frac{b+1}{b+4}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\left(2\right)\)

và \(\frac{c+1}{c+3}\ge2\sqrt{\frac{3}{\left(a+2\right)\left(b+4\right)}}\left(3\right)\)

Từ 1,2,3  ta có:

\(\frac{a+1}{a+2}.\frac{b+1}{b+4}.\frac{c+1}{c+3}\ge\frac{48}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\Leftrightarrow Q\ge48\)

Vậy Min Q =48 khi a=1,b=5,c=3

14 tháng 3 2018

Đặt A là biểu thức cần CM 

ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh ) 

Áp dụng BĐT quen thuộc x² + y² ≥ 2xy 

a^4 + b² ≥ 2a²b (1) 
b^4 + c² ≥ 2b²c (2) 
c^4 + a² ≥ 2c²a (3) 
 

14 tháng 3 2018

tiếp đi bạn huy