giải bất phương trình
(-7x+14)/(x+5)(2x-3)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
a: (3x-2)(4x+5)=0
=>3x-2=0 hoặc 4x+5=0
=>x=2/3 hoặc x=-5/4
b: (2,3x-6,9)(0,1x+2)=0
=>2,3x-6,9=0 hoặc 0,1x+2=0
=>x=3 hoặc x=-20
c: =>(x-3)(2x+5)=0
=>x-3=0 hoặc 2x+5=0
=>x=3 hoặc x=-5/2
a) Ta có \(a = 2 > 0\) và \(\Delta = {\left( { - 5} \right)^2} - 4.2.3 = 1 > 0\)
=> \(2{x^2} - 5x + 3 = 0\) có 2 nghiệm phân biệt \({x_1} = 1,{x_2} = \frac{3}{2}\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} - 5x + 3\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình \(2{x^2} - 5x + 3 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)
b) Ta có \(a = - 1 < 0\) và \(\Delta ' = {\left( { - 1} \right)^2} - \left( { - 1} \right).8 = 9 > 0\)
=> \( - {x^2} - 2x + 8 = 0\)có 2 nghiệm phân biệt \({x_1} = - 4,{x_2} = 2\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - {x^2} - 2x + 8\) mang dấu “-” là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình \( - {x^2} - 2x + 8 \le 0\) là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)
c)
Ta có \(a = 4 > 0\) và \(\Delta ' = {\left( { - 6} \right)^2} - 4.9 = 0\)
=> \(4{x^2} - 12x + 9 = 0\) có nghiệm duy nhất \(x = \frac{3}{2}\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(4{x^2} - 12x + 9\) mang dấu “-” là \(\emptyset \)
Vậy tập nghiệm của bất phương trình \(4{x^2} - 12x + 9 < 0\) là \(\emptyset \)
d) \( - 3{x^2} + 7x - 4 \ge 0\)
Ta có \(a = - 3 < 0\) và \(\Delta = {7^2} - 4.\left( { - 3} \right).\left( { - 4} \right) = 1 > 0\)
=> \( - 3{x^2} + 7x - 4 = 0\) có 2 nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{4}{3}\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 7x - 4\) mang dấu “+” là \(\left[ {1;\frac{4}{3}} \right]\)
Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 7x - 4 \ge 0\) là \(\left[ {1;\frac{4}{3}} \right]\)
ĐKXĐ: \(x>3\)
Lấy logarit 2 vế: \(\left(2x^2-7x\right).ln\left(x-3\right)>0\)
\(\Leftrightarrow x\left(2x-7\right)ln\left(x-3\right)>0\)
Bảng xét dấu:
\(\Rightarrow\) Nghiệm của BPT là \(\left[{}\begin{matrix}3< x< \dfrac{7}{2}\\x>4\end{matrix}\right.\)
Ta có: -2 – 7x > (3 + 2x) – (5 – 6x) ⇔ -2 – 7x > 3 + 2x – 5 + 6x
⇔ -7x – 2x – 6x > 3 – 5 + 2
⇔ -15x > 0 ⇔ x < 0
Vậy tập nghiệm của bất phương trình là: {x|x < 0}
ĐKXĐ: \(3\le x\le5\)
\(2x^2-7x-2-\sqrt{x-3}-\sqrt{5-x}=0\)
\(\Leftrightarrow2x^2-7x-4+1-\sqrt{x-3}+1-\sqrt{5-x}=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)-\dfrac{x-4}{1+\sqrt{x-3}}+\dfrac{x-4}{1+\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+1-\dfrac{1}{1+\sqrt{x-3}}+\dfrac{1}{1+\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+\dfrac{\sqrt{x-3}}{1+\sqrt{x-3}}+\dfrac{1}{1+\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow x-4=0\) (ngoặc to luôn dương)
\(\Leftrightarrow x=4\)
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
\(\dfrac{-7x+14}{\left(x+5\right)\left(2x-3\right)}>0\) (1)
ĐKXĐ: \(x\ne-5;x\ne\dfrac{3}{2}\)
BPT (1) \(\Leftrightarrow\dfrac{-7\left(x-2\right)}{\left(x+5\right)\left(2x-3\right)}>0\)
\(\Leftrightarrow\dfrac{x-2}{\left(x+5\right)\left(2x-3\right)}< 0\)
*Th1: \(\left\{{}\begin{matrix}x-2>0\\\left(x+5\right)\left(2x-3\right)< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>2\\-5< x< \dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow2< x< \dfrac{3}{2}\) (vô lí)
*Th2: \(\left\{{}\begin{matrix}x-2< 0\\\left(x+5\right)\left(2x-3\right)>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 2\\\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2>x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\)
Vậy:....