K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

Ta có \(\Delta HBA\approx\Delta HAC\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)

=> HB.HC = HA2

=> 2HB.HC = \(\frac{288}{25}\)

mà HB + HC = BC =  5 (1)

=> HB2 + HC2 + 2HB.HC = 25

<=> HB2 + HC2 - 2.HB.HC = 1,96

<=> HB - HC = 1,4 (2)

Từ (1) và (2) => HB = 3,2 ; HC = 1,8

5 tháng 7 2021

Mình hỏi tý nè :

Sao cái tam giác ABC vuông tại A rồi thì AB là chiều cao chứ ạ. Hì hì mình nói có gì sai mọi người bảo mình nha.

Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:

AB^2+AB^2=BC^2

Hay: 12^2+5^2=169=BC^2 => BC=13cm

ÁP dụng hệ thức ta có: +) AB^2=BH.BC

Hay: BH=AB^2:BC=144:13 =144/13(cm)

Ta có CH=BC-BH=13-144/13=25/13(cm)

DO KHÔNG RÕ CÂU HỎI NÊN MÌNH CŨNG KO CHẮC LẮM...

HỌC TỐT!!!

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:

$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{12}=3$ (cm) 

$CH=BC-BH=12-3=9$ (cm)

7 tháng 9 2016

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH.CH\Rightarrow x\left(25-x\right)=144\Leftrightarrow x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=9\\x=16\end{array}\right.\) (tm)

Nếu BH = 9 cm thì CH = 16 cm\(\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

9 tháng 9 2016

Gỉa sử \(\Delta ABC\) có AB>AC

\(AB.AC=AH.BC=12.25=300\)

\(\Leftrightarrow2AB.AC=2.300=600\)

Áp dụng định lý Pytago cho \(\Delta ABC\) vuông tại A ta có:

\(AB^2+AC^2=BC^2=25^2=625\) (1)

\(\left(1\right)\Rightarrow AB^2+AC^2-2AB.AC=625-600\)

\(\Leftrightarrow\left(AB-AC\right)^2=25\Leftrightarrow AB-AC=5\)   (a)  (Vì AB>AC \(\Rightarrow AB-AC>0\))

\(\left(1\right)\Rightarrow AB^2+AC^2+2AB.AC=600+625=1225\)

\(\Leftrightarrow\left(AB+AC\right)^2=1225\Rightarrow AB+AC=35\) (b)

Cộng vế vs vế của (a) và (b) ta được: \(2AB=40\Rightarrow AB=20\)

                                                         \(\Rightarrow AC=AB-5=20-5=15\)

Xét \(\Delta ABC\) vuông tại A, \(AH\perp BC\)\(\Rightarrow\) theo hệ thức lượng trong tam giác vuông ta có:

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{20^2}{25}=16\)

\(\Rightarrow CH=BC-BH=25-16=9\)

 

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

1: \(BC=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\)

CH=5,4(cm)

2: \(BC=\sqrt{2+2}=2\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=1\left(cm\right)\)

\(BH=CH=AH=1\left(cm\right)\)

Ta có: BC=BH+CH

nên BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

12 tháng 9 2021

13 tháng 9 2023

Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:

BC2=AB2+AC2

<=>BC2=32+42

<=>BC2=25

<=>BC=5(cm)

Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:

AB.AC=BC.AH

<=>3.4=5.AH

<=> AH=\(\dfrac{3.4}{5}\)

<=>AH=2,4(cm)

Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:

AB2=AH2+BH2

<=>BH2=32-2,42

<=>BH2=3,24

<=>BH=1,8(cm)
Ta có:BC=BH+CH

=>CH=BC-BH=5-1,8=3,2(cm)

Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm