cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E,F lần lượt là chân đường vg góc kẻ từ C đến các đg thẳng AB,AD. G là chân đường vg góc kẻ từB đến AC Chứng minh rằng:
a)tam giác BCG ∼tam giác CAF
b) AB.AE+AD.AF=AC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)
\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)
DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.
b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)
c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)
△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)
\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)
a:Gọi O là giao của AC và BD
=>O là trung điểm chung của AC và BD
Xét ΔOEB vuông tạiE và ΔOFD vuông tại F có
OB=OD
góc BOE=góc DOF
=>ΔOEB=ΔOFD
=>BE=DF
mà BE//DF
nên BEDF là hình bình hành
b: Xét ΔCHB vuông tại H và ΔCKD vuông tại K có
góc CBH=góc CDK
=>ΔCHB đồng dạng với ΔCKD
=>CH/CK=CB/CD
=>CH*CD=CK*CB
a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD :
\(AE.AB=AF.AC=AD^2\)
b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html
c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)