chung minh (a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thử thế số vào, bất kì số nào cũng được cà thì chắc chắn (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
Vd: (3+4+5)3=1728
33+43+53+3(3+4)(4+5)(5+3)=1728
=> (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Vậy \(a^3+b^3+c^3=3abc\)
(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
<=>(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a) (1)
Ta có:(a+b+c)3-a3-b3-c3=[(a+b+c)3-a3]-(b3+c3)
=(a+b+c-a)(a2+b2+c2+2ab+2bc+2ca+a2+ab+ac+a2)-(b+c)(b2-bc+c2)
=(b+c)(3a2+b2+c2+3ab+3ac+2bc)-(b+c)(b2-bc+c2)
=(b+c)(3a2+b2+c2+3ab+3ac+2bc-b2+bc-c2)
=(b+c)(3a2+3ab+3ac+3bc)
=3(b+c)](a2+ab)+(ac+bc)]
=3(b+c)[a(a+b)+c(a+b)]
=3(b+c)(a+c)(a+b)
=>(1) đúng => đpcm
(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)=a3+b3+c3+3(a+b)(a+c)(b+c)