Giải bất phương trình : với x là số tự nhiên
x3-7x2+36<0
bằng máy tính fx- 570VN PLUS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định: a ≠ 0.
Ta có:
⇔ x( a + 2 ) > 1/a ( 1 )
+ Nếu a > - 2,a ≠ 0 thì nghiệm của bất phương trình là
+ Nếu a < - 2 thì nghiệm của bất phương trình là
+ Nếu x = - 2 thì ( 1 ) có dạng 0x > - 1/2 luôn đúng với ∀ x ∈ R
a)
⇔ x2 + 6x + 9 – 10 ≥ x2 + 3x + 2x + 6 – 4
⇔ x2 – x2 + 6x – 3x – 2x ≥ –9 + 10 + 6 – 4
⇔ x ≥ 3
Tập nghiệm: S = {x | x ≥ 3}.
Biểu diễn trên trục số:
Vậy tập nghiệm của bất phương trình là
Điều kiện : x ≠ 1
Ta có:
⇔ x 3 +7 x 2 +6x -30 = ( x 2 –x +16)(x -1)
⇔ x 3 +7 x 2 +6x -30 = x 3 – x 2 – x 2 +x +16x -16
⇔ 9 x 2 -11x -14 =0
∆ = - 11 2 -4.9.(-14) = 121 +504 = 625 > 0
∆ ' = 625 =25
Giá trị của x thỏa mãn điều kiện bài toán
Vậy nghiệm của phương trình là x = -7/9 và x = 2
\(\Leftrightarrow\dfrac{x}{a}-x>4-a-\dfrac{3}{a}\)
\(\Leftrightarrow x\left(\dfrac{1}{a}-1\right)>\dfrac{4a-a^2-3}{a}\)
- Nếu \(\dfrac{1}{a}-1>0\Leftrightarrow0< a< 1\)
\(\Rightarrow x>\dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-1\right)}\Leftrightarrow x>a-3\)
- Nếu \(\dfrac{1}{a}-1< 0\Leftrightarrow\left[{}\begin{matrix}a< 0\\a>1\end{matrix}\right.\)
\(\Rightarrow x< \dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-a\right)}\Leftrightarrow x< a-3\)
⇔ -7 x 2 + 4 = 5x + 5 – x 2 + x – 1
⇔ -7 x 2 + x 2 – 5x – x = 5 – 1 – 4
⇔ -6 x 2 – 6x = 0
⇔ - x 2 – x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
⇔ x = 0 hoặc x = -1 (loại)
Vậy phương trình có nghiệm x = 0.
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
Lại chiến tranh tiếp à?
x3-7x2+36<0
<=>(x2+2x)-(9x2-36)<0
<=>x(x+2)-9(x-2)(x+2)<0
<=>(x+2)[x-9(x-2)]<0
<=>(x+2)(18-8x)<0
<=> x+2>0 18-8x<0 hoặc x+2<0 18-8x>0
<=>x>-2 x>2,25 hoặc x<-2 x<2,25
<=>x>2,25 hoặc x<-2