Cho x,y là 2 số thực thoả mãn x+y>0 và x^2+y^2+8xy/x+y=16
Tìm GTNN của Q=x^2-2x+4y+100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2=3\sqrt{xy}+2\sqrt{xz}\le\dfrac{3}{2}\left(x+y\right)+x+z\)
\(\Rightarrow5x+3y+2z\ge4\)
\(A=5\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+3\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+2\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)
\(A\ge5.2x+3.2y+2.2z=2\left(5x+3y+2z\right)\ge8\)
\(A_{min}=8\) khi \(x=y=z=\dfrac{2}{5}\)
\(5x^2+8xy+5y^2=36\)
\(\Rightarrow5\left(x+y\right)^2-2xy=36\)
\(\Rightarrow-2xy=36-5\left(x+y\right)^2\)
Ta lại có \(M=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2+36-5\left(x+y\right)^2=36-4\left(x+y\right)^2\)
Mà \(-4\left(x+y\right)^2\Leftarrow0\)với mọi \(x;y\)nên \(M=36-4\left(x+y\right)^2\Leftarrow36\)
Dấu "=" xảy ra khi \(x=-y\)
Với y = 0 ta có: \(x^2=\frac{1}{2}\)=> M = 1/2 (1)
Với y khác 0
Ta có: \(M=x^2-xy+y^2=\frac{x^2-xy+y^2}{2x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}{2\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)
Đặt: \(\frac{x}{y}=t\)
Ta có: \(M=\frac{t^2-t+1}{2t^2-t+1}\Leftrightarrow\left(2M-1\right)t^2+\left(1-M\right)t+M-1=0\)(1)
+) Nếu 2M - 1 = 0 <=> M = 1/2 (2)
khi đó: t = 1
+) Nếu M khác 1/2
(1) có \(\Delta=\left(1-M\right)^2-4\left(2M-1\right)\left(M-1\right)=-7M+10M-3\)
Để (1) có nghiệm thì \(\Delta\ge0\)<=> \(\frac{3}{7}\le M\le1\)(3)
Từ (1); (2); (3) ta có GTNN của M = 3/7
Dấu "=" xảy ra <=> t = 2 hay \(\frac{x}{y}=2\Leftrightarrow x=2y\)
Thay vào \(2x^2-xy+y^2=1.\) ta có: \(8y^2-2y^2+y^2=1.\)
<=> \(y=\pm\frac{1}{\sqrt{7}}\)
Với \(y=\frac{1}{\sqrt{7}}\Rightarrow x=\frac{2}{\sqrt{7}}\)
Với \(y=\frac{-1}{\sqrt{7}}\Rightarrow x=\frac{-2}{\sqrt{7}}\)
Kết luận vậy min M = 1 tại ( x ; y ) \(\in\left\{\left(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}}\right);\left(\frac{-2}{\sqrt{7}};\frac{-1}{\sqrt{7}}\right)\right\}\)
\(M=\frac{2x^2+4xy+2y^2+8xy}{x+y}=\frac{2\left(x^2+2xy+y^2\right)+2\cdot4xy}{x+y}=\frac{2\left(x+y\right)^2+2\cdot1}{x+y}\)
\(=2\left(x+y\right)+\frac{2}{x+y}>=2\sqrt{2\left(x+y\right)\cdot\frac{2}{x+y}}=2\cdot\sqrt{4}=2\cdot2=4\)(bđt cosi)
dấu = xảy ra khi x=y=\(\frac{1}{2}\)
vậy min M là 4 khi \(x=y=\frac{1}{2}\)
Ta có\(5x^2+5y^2+8xy-2x+2y+2=0\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
<=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
mà \(\hept{\begin{cases}4\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}4\left(x+y\right)^2+\left(y+1\right)^2+\left(x-1\right)^2\ge0\)
dâu = xảy ra <=>\(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
rồi bạn thay vào và tự tính M nhé !
^_^
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)
\(x^2+y^2+\frac{8xy}{x+y}=16\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4x^2+4y^2+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)
\(\Leftrightarrow x+y-4=0\)(vì \(x^2+y^2+4x+4y>0\))
\(\Leftrightarrow y=4-x\).
\(Q=x^2-2x+4y+100=x^2-2x+4\left(4-x\right)+100\)
\(=x^2-6x+116=\left(x-3\right)^2+107\ge107\)
Dấu \(=\)khi \(x=3\Rightarrow y=1\).