Một người dự định đi xe đạp từ A đến B trong 1 thời gian quy địn với vận tốc 15km/h. Sau khi đi đc 1 nửa quãng đường, ng đó nghỉ 30p. Sau đó vì muộn giờ ng đó đã tăng vận tốc thêm mỗi giờ 5km trên quãng đường còn lại đến B sớm 5p. Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ban đầu của người đó là x (km/h; \(x>5\))
Thời gian dự định là \(\dfrac{60}{x}\) (giờ)
Vận tốc lúc sau là x - 5 (km/h)
Thời gian người đó đi trên nửa quãng đường đầu là \(\dfrac{30}{x}\) (giờ)
Thời gian người đó đi trên nửa quãng đường sau là \(\dfrac{30}{x-5}\) (giờ)
Do người đó đến B chậm hơn dự định 1 giờ => ta có phương trình:
\(\dfrac{30}{x}+\dfrac{30}{x-5}=\dfrac{60}{x}+1\)
<=> \(\dfrac{30}{x-5}-\dfrac{30}{x}-1=0\)
<=> \(\dfrac{30x-30\left(x-5\right)-x\left(x-5\right)}{x\left(x-5\right)}=0\)
<=> 30x - 30x + 150 - x2 + 5x = 0
<=> x2 -5x - 150 = 0
<=> (x-15)(x+10) = 0
Mà x > 5
<=> x - 15 = 0
<=> x = 15 (tm)
KL Vận tốc dự định của người đó là 15 km/h
Đổi \(30^,=\frac{1}{2}h\)
Gọi độ dài quãng đường AB là x( km ) ĐK: x>0
Nửa quãng đường AB dài \(\frac{x}{2}\left(km\right)\)
Thời gian dự định người đó đi hết quãng đường AB là \(\frac{x}{10}\left(h\right)\)
Thời gian thực tế người đó đi nửa quãng đường đầu là \(\frac{x}{2}:10=\frac{x}{20}\left(h\right)\)
Thời gian thực tế người đó đi nửa quãng đường sau là: \(\frac{x}{2}:\left(10+5\right)=\frac{x}{30}\left(h\right)\)
Ta có pt sau:
\(\frac{x}{20}+\frac{x}{30}+\frac{1}{2}=\frac{x}{10}\)
\(\Leftrightarrow\frac{-x}{60}=\frac{-1}{2}\)
\(\Leftrightarrow x=30\)( km)
Vậy quãng đường AB dài 30 km
Gọi x (km/h) là vận tốc dự định của người đó (x>5)
Vận tốc người đó giảm vận tốc 5km/h là x−5 (km/h)
Thời gian dự đinh đi là: \(\dfrac{60}{x}\)(giờ)
Thời gian thực tế người đó đi nửa quãng đường đầu là: \(\dfrac{30}{x}\)(giờ)
Thời gian thức tế người đó đi nửa quãng đường còn lại là: \(\dfrac{30}{x-5}\)(giờ)
Theo đề ra ta có thời gian thực tế chậm hơn thời gian dự định là 1 giờ nên ta có:
\(\dfrac{60}{x}\)=\(\dfrac{30}{x}\)+ \(\dfrac{30}{x-5}\) - 1
⇒ 60(x-5) = 30(x-5) + 30x - x(x-5)
⇔ 60x - 300 = 30x - 150 + 30x - x2+5x
⇔ x2 - 5x - 150 = 0
⇔ \(\left[{}\begin{matrix}x=15\left(tm\right)\\x=-10\left(loại\right)\end{matrix}\right.\)
Vậy.....
Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)
Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)
15 phút=\(\frac{1}{4}\)h Ta có:
\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
\(\Leftrightarrow x\left(x+2\right)=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)
gọi quãng đường AB là x(km)(x>0)
đổi \(30'=\dfrac{1}{2}h\), \(5'=\dfrac{1}{12}h\)
=>nửa quãng đường đầu người đó đi trong: \(\dfrac{\dfrac{1}{2}x}{15}-\dfrac{1}{2}=\dfrac{x}{30}-\dfrac{1}{2}\left(h\right)\)
=>nửa quãng còn lại đi trong: \(\dfrac{\dfrac{1}{2}x}{15+5}=\dfrac{x}{40}\left(h\right)\)
\(=>\dfrac{x}{30}-\dfrac{1}{2}-\dfrac{x}{40}=\dfrac{1}{12}=>x=70\left(tm\right)\)