Cho tam giác ABC có góc A=90độ. biết AB-AC=21 . tính các cạnh của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
\(\Delta ABC\)có \(\widehat{A}=90^o\)\(\Rightarrow\Delta ABC\)vuông tại A (1)
mà \(\widehat{C}=60^o\)\(\Rightarrow\widehat{B}=30^o\)(2)
Từ (1) và (2) \(\Rightarrow AC=\frac{1}{2}BC\)( trong tam giác vuông cạnh đối diện với góc \(30^o\)bằng \(\frac{1}{2}\)cạnh huyền )
\(\Rightarrow BC=2AC=2.2=4\left(cm\right)\)
\(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lí Pytago )
\(\Rightarrow AB^2=BC^2-AC^2=4^2-2^2=12\)\(\Rightarrow AB=\sqrt{12}\left(cm\right)\)
Vậy \(AB=\sqrt{12}cm\), \(BC=4cm\)
njauvakhvhjhjbckjsbjhvjkabxnbxjhjb jidbkjd kdbcie ckc jec mnd xkabxdsjbc
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
\(\Delta\) cân tại A nên: AB = AC
mà AB = 4 \(\Rightarrow\) AC = 4
Áp dụng định lí Pytago, ta có
\(BC^2=AB^2+AC^2=4^2+4^2\\ =\sqrt{16+16}=4\sqrt{2}\)