Cho tam giác ABC có đường cao AH.Biết C = 50o, B = 60o, AB = 10cm. Tính AH, BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH=căn 12^2-9^2=3*căn 7(cm)
CH=AH^2/HB=9*7/9=7(cm)
BC=9+7=16cm
AC=căn CH*BC=4*căn 7(cm)
Xét tam giác \(ABH\) vuông tại H có
\(AH^2+HB^2=AB^2\left(Pytago\right)\)
\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Xét tam giác ABC vuông tại A
\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)
a. + CH = 10 - 3.6 = 6.4 (cm)
- Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào ΔABC ta có :
+ \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4.8\) (cm)
+ \(AB^2=BC.BH\)
\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\) (cm)
+ \(AC^2=BC.CH\)
\(\Rightarrow AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\) (cm)
b. \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
c. \(P_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
A B C H 12cm 9cm
a, Xét tam giác ABC vuông tại A, đường cao AH có:
+ AH2 =BH.CH
=>CH=\(\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)
=>BC=BH+CH=9+16=25(cm)
+ AB2=BH.BC
=>AB=\(\sqrt{BH.BC}=\sqrt{9.25}=15\left(cm\right)\)
+AC2=CH.BC
=>AC=\(\sqrt{CH.BC}=\sqrt{16.25}=20\left(cm\right)\)
a, Stam giác ABC=\(\dfrac{AB.AC}{2}=\dfrac{15.20}{2}=150\left(cm^2\right)\)
a) Vì tam giác ABC cân nên : AB = AC (gt)
AH chung (gt)
H vuông (gt)
=> Tam giác ABH = tam giác AHC ( cạnh huyền và cạnh góc vuông)
b) Vì tam giác ABC cân nên đường cao AH sẽ tạo ra một đường chính giữa AB chia thành 2 phần bằng nhau ( cái này gọi là đường trung trực ) => BH = HC = \(\frac{12}{2}\)= 6 cm.
Áp dụng định lí Pi ta go ta có:
102 - 62 = 64 => \(\sqrt{64}\) = 8 . Vậy AH bằng 8 cm.
c) Xét 2 tam giác ABG và tam giác AGC có:
AG chung (gt)
AB = AC (gt)
Vì G là trọng tâm của tam giác => G cách đều 3 cạnh cảu tam giác, điều đó có nghĩa là:
GA = GB = GC
=> GB = GC => Tam giác ABG = ACG
a: AC=8cm
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: AH=4,8cm
bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
Ta có: \(AC^2=CH\cdot BC\)
\(\Leftrightarrow CH^2+16HC-225=0\)
\(\Leftrightarrow CH^2+25HC-9HC-225=0\)
\(\Leftrightarrow CH=9\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=15^2-9^2=144\)
hay AH=12cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20cm
Ta có: BC=BH+HC
nên BC=9+16=25cm
A B C H 10 cm
Hình vẽ chỉ mang tính chất minh họa
Xét tam giác AHB vuông tại H:
+ \(AH=AB.\sin B\)
=>\(AH=10.\sin\left(60\right)\)
=>\(AH=5\sqrt{3}\left(cm\right)\)
+ \(BH=AB.\cos B\)
=>\(BH=10.\cos\left(60\right)\)
=>\(BH=5\left(cm\right)\)
Xét tam giác AHC vuông tại H:
\(CH=AH.\cot C\)
\(CH=5\sqrt{3}.\cot\left(50\right)\)
\(CH\approx7,3\left(cm\right)\)
Vậy \(BC\approx12,3\left(cm\right)\)