với -3\(\le\)x\(\le\)-1 . Bỏ dấu GTTĐ trong A = /x+3/ + /-1-x/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-500\right|+\left|x-300\right|\)
\(\ge\left|x-500+300-x\right|=200\)
\(\Rightarrow A\ge200\)
Dấu = khi \(\left(x-500\right)\left(x-300\right)\ge0\)\(\Rightarrow300\le x\le500\)
\(\Rightarrow\begin{cases}300\le x\le500\\\left(x-500\right)\left(x-300\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=500\\x=300\end{cases}\)
Vậy MinA=200 khi \(\begin{cases}x=500\\x=300\end{cases}\)
\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)
\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)
\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)
\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)
\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)
\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)
\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)
\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)
\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)
\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)
A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)
\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)
B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)
\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)
\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)
\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)
\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)
\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)
Ta có:
Tập hợp A:
\(A=\left[-5;\dfrac{1}{2}\right]\)
Tập hợp B:
\(B=\left(-3;+\infty\right)\)
Mà: \(A\cap B\)
\(\Rightarrow\left\{x\in R|-3\le x\le\dfrac{1}{2}\right\}\)
⇒ Chọn A
a:
A=2x+|1-3x|=|3x-1|+2x
Trường hợp 1: x>=1/3
A=3x-1+2x=5x-1
Trường hợp 2: x<1/3
A=1-3x+2x=1-x
b: A=2|x-4|-4|-3x|
=2|x-4|-4|3x|
Trường hợp 1: x<0
B=2(4-x)-4(-3x)
=8-2x+12x
=10x+8
Trường hợp 2: 0<=x<4
B=-4x3x+2(4-x)=-12x+8-2x=-14x+8
Trường hợp 3: x>=4
B=2(x-4)-12x=2x-16-12x=-10x-16
Bài 2:
a: \(=248+2064-12-236\)
\(=12-12+2064=2064\)
b: \(=-298-302-300=-600-300=-900\)
c: \(=5-7+9-11+13-15=-2-2-2=-6\)
d: \(=456+58-456-38=20\)
-3 =< x => x + 3 >= 0 => |x+ 3| = x+3
x =< -1 => 0 =< -x -1 => |-x -1| = -x -1
Vậy A = x+3 - x - 1 = 2