K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) đồng biến khi: \(\left(x-1\right)\left(2x-3\right)>0\)

\(\Leftrightarrow x-1>0;2x-3>0\) hoặc \(x-1< 0;2x-3< 0\)

\(\Leftrightarrow x>1;x>\frac{3}{2}\) hoặc \(x< 1;x< \frac{3}{2}\)

\(\Leftrightarrow x>\frac{3}{2}\) hoặc \(x< 1\)

\(y=f\left(x\right)=\left(x-1\right)\left(2x-3\right)\) nghịch biến khi: \(\left(x-1\right)\left(2x-3\right)< 0\)

\(\Leftrightarrow x-1>0;2x-3< 0\) hoặc \(x-1< 0;2x-3>0\)

\(\Leftrightarrow x>1;x< \frac{3}{2}\) hoặc \(x< 1;x>\frac{3}{2}\)

\(\Leftrightarrow1< x< \frac{3}{2}\)

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

10 tháng 11 2017

14 tháng 9 2017

23 tháng 6 2018

25 tháng 5 2018

5 tháng 8 2023

ĐỀ ĐÂY NHA
loading...

loading...

1 tháng 8 2019

7 tháng 7 2017

Đáp án D

Dựa vào hình vẽ, ta thấy rằng

+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3  

Và f '(x) đổi dấu từ - → +  khi đi qua x 1 , x 3 ⇒  Hàm số có 2 điểm cực tiểu, 1 điểm cực đại

+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1  đồng biến trên x 1 ; x 2  (1) sai

+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3  (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5  (chứa khoảng (3;5)) ⇒ 2 ; 3  đúng

Vậy mệnh đề 2,3 đúng và 1, 4 sai.

13 tháng 5 2019