cho A=\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2012^2}-1\right)\)
B=\(\frac{-1}{2}\).So sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)
=> A<-1/2
Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)
\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)
\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)
\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)
\(A=\frac{1.2018}{2017.2}\)
\(A=\frac{1009}{2017}\)
Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)
\(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)
Vậy A>B
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)\cdot\cdot\cdot\cdot\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
\(A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)\left(\frac{-15}{16}\right)\cdot\cdot\cdot\left(\frac{-4052168}{4052169}\right)\left(\frac{-4056195}{4056196}\right)\)
\(A=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot....\cdot\frac{-2012\cdot2014}{2013\cdot2013}\cdot\frac{-2013\cdot2015}{2014\cdot2014}\)
\(A=\frac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot....\cdot\left(-2012\right)\cdot\left(-2013\right)}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\cdot\frac{3\cdot4\cdot5\cdot....\cdot2014\cdot2015}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\)
\(A=\frac{-1}{2014}\cdot\frac{2015}{2}=\frac{-2015}{4028}\)
Ta thấy \(\frac{-2015}{4028}< \frac{-1}{2}\) \(\Rightarrow A< B\)
A có: \(\frac{2014-2}{3-2}+1=2013\) ( thừa số )
Ta thấy mỗi thừa số của A đều có dạng \(\frac{1}{n^2}-1\)với \(n\inℕ^∗\)và \(n>1\)
Có \(\frac{1}{n^2}< 1\Rightarrow\frac{1}{n^2}-1< 1-1=0\)
=> Mỗi thừa số của A đều nhỏ hơn 0
=> A là tích của 2013 thừa số nhỏ hơn 0
Mà 2013 là số lẻ
=> A < 0
Mà B = \(\frac{1}{2}\)> 0
=> A < B
Ta có : \(\frac{1}{n^2}-1=\frac{1-n^2}{n^2}=\frac{\left(1-n\right)\left(1+1\right)}{n^2}\)
Áp dụng :
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-2013.2015}{2014.2014}\)
\(=\frac{-\left(1.2.3...2013\right)\left(3.4.5....2015\right)}{\left(2.3.4.....2014\right)\left(2.3.4......2014\right)}=\frac{-2015}{2014.2}=\frac{-2015}{4028}\)
Sr còn thiếu
\(A=-\frac{2015}{4028}< \frac{-2014}{4028}=-\frac{1}{2}\)
Vậy \(A< B\)