Cho a thuộc Z và a không chia hết cho 3
a,Chứng minh rằng a2 chia cho 3 dư 1
b,Chứng tỏ rằng không tìm được số nguyên n nào để n2+25-10n là số có tổng các chữ số bằng 2006
Đố ai làm nhanh nhất nào nhanh tay lên !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặt a=3k(k thuộc z)
ta có: a^2=(3k)^2=9K^2
=>a^2 chia hết cho 3
b)n^2+25-10n=(n-5)^2
=>(n-5)^2 là số chính phương
mặt khác 2006 ko phải là số chính phương nên ko tồn tại số nguyên n
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
bạn biết rồi còn hỏi người khác làm chi???????????