129-5[29-(6-1) mũ 2]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,a) 695- [200+ (11- 12)]
= 695- [200+ (11- 1)]
= 695- [200+ 10]
= 695- 210
= 485
b) (519: 517+ 3): 7
= (52+ 3): 7
= (25+ 3): 7
= 28: 7
= 4
c) 129- 5[29- (6- 12)]
= 129- 5[29- (6- 1)]
= 129- 5[29- 5]
= 129- 5. 24
= 129- 120
= 9
3,a) 2x- 49= 5. 32
2x- 49= 5. 9
2x- 49= 45
2x = 45+ 49
2x = 94
x = 94: 2
x = 47
c) 2x- 15= 17
2x = 17+ 15
2x = 32
2x = 25
=> x = 5
Câu 3b bạn tự làm nhé, xin loiosxn vì không giúp được cả bài.
CHÚC BẠN HỌC GIỎI !!!
MÌNH TÌM RA CÁCH LÀM CÂU 3b RỒI !!!
5x+ 2x= 45+ 20: 15
5x+ 2x= 45+ \(\frac{4}{3}\)
5x+ 2x= \(\frac{139}{3}\)
(5+ 2)x=\(\frac{139}{3}\)
7x =\(\frac{139}{3}\)
x =\(\frac{139}{3}\): 7
x =\(\frac{139}{21}\)
CHÚC BẠN HỌC GIỎI !!!
a: \(=2011+5\cdot\left[300-10^2\right]\)
\(=2011+5\cdot200\)
=1011
b: \(=695-\left[200+10^2\right]\)
=695-300
=395
a) =2011+5.200
=3011
b)=695-300
=395
c)1=29-5.4
=109
d)=2010-2000:400
=2010-5
=2005
a: =5-78*32
=5-2496
=-2491
b: \(=6\left(9-6\right)=6\cdot3=18\)
c: \(=46\cdot\dfrac{\left(123-42\right)}{81}=46\)
d: \(=181+3-84+8\cdot25\)
=100+200
=300
e: \(=64\cdot35+140\cdot84-1=2240-1+11760\)
=14000-1
=13999
f: \(=3^3+25\cdot8-1=26+200=226\)
g: \(=3+2^4+1=16+4=20\)
h: \(=36:4\cdot3+2\cdot25-1=27+50-1=27+49=76\)
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
a) \(9.x-2.x=\frac{6^{27}}{6^{25}}+\frac{48}{12}\)
\(\Leftrightarrow7x=6^2+4\)
\(\Leftrightarrow7x=36+4=40\)
\(\Leftrightarrow x=\frac{40}{7}\)
Vậy : \(x=\frac{40}{7}\)
b) \(11^x=5.x+\frac{5^{31}}{5^{29}}+3.2^2-10^0\)
\(\Leftrightarrow11^x=5x+5^2+12-1\)
\(\Leftrightarrow11^x=5x+36\)
\(\Rightarrow x\in\varnothing\)
129-5[29-(6-1)2]
=129-5(29-52)
=129-5(29-25)
=129-5.4
=129-20
=109
129-5[29-(6-1)2] =129-5[29-42]
= 129-5[29-16]
= 129-5.13
= 129-65
= 64
nha
Đặt : \(A=5+5^2+5^3+...+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{29}\right)\)
\(=6\left(5+5^3+...+5^{29}\right)⋮6\) (đpcm)
Bài giải
\(5+5^2+5^3+5^4+...+5^{29}+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)
\(=6\left(5+5^3+...+5^{29}\right)\text{ }⋮\text{ }6\)
\(\Rightarrow\text{ ĐPCM}\)
129 -5[29-(6-1) ^2]
=129 - 5[29- 5^2]
= 129 -5[ 29-25]
=129 - 5 × 4
=129 - 20
=109
Ta có: \(129-5\left[29-\left(6-1\right)^2\right]\)
\(=129-5\left[29-5^2\right]\)
\(=129-5\cdot4\)
=109