K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

\(B=\sqrt{x^2+\frac{1}{x^2}-2}-\sqrt{x^2+\frac{1}{x}+2}=\sqrt{\left(x-\frac{1}{x}\right)^2}-\sqrt{\left(x+\frac{1}{x}\right)^2}=x-\frac{1}{x}-x-\frac{1}{x}=-\frac{2}{x}\)

 

6 tháng 8 2015

\(B=\sqrt{\left(x-\frac{1}{x}\right)^2}-\sqrt{\left(x+\frac{1}{x}\right)^2}=\left|x-\frac{1}{x}\right|-\left|x+\frac{1}{x}\right|=\frac{\left|x^2-1\right|}{\left|x\right|}-\frac{x^2+1}{\left|x\right|}=\frac{\left|x^2-1\right|-\left(x^2+1\right)}{\left|x\right|}\)

x- 1 > 0 <=> (x-1).(x+1) > 0 => x + 1 < 0 hoặc x - 1> 0  <=> x <-1 hoặc x > 1

Vậy 

+) Khi x < -1 => B = \(\frac{x^2-1-\left(x^2+1\right)}{-x}=\frac{2}{x}\)

+) Khi  -1< x< 0 thì B =  \(\frac{-\left(x^2-1\right)-\left(x^2+1\right)}{-x}=\frac{-2x^2}{-x}=2x\)

+) Khi 0 < x < 1 thì B =  \(\frac{-\left(x^2-1\right)-\left(x^2+1\right)}{x}=\frac{-2x^2}{x}=-2x\)

+) Khi x  > 1 thì B =  \(\frac{\left(x^2-1\right)-\left(x^2+1\right)}{x}=\frac{-2}{x}\)

 

5 tháng 8 2023

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))

\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)

\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)

\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)

\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)

7 tháng 8 2023

\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)

\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)

\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)

Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.