Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
a) Ta có: \(\widehat{ANO}=90^0\)
nên N nằm trên đường tròn đường kính AO(1)
Ta có: \(\widehat{AMO}=90^0\)
nên M nằm trên đường tròn đường kính AO(2)
Ta có: \(\widehat{AEO}=90^0\)
nên E nằm trên đường tròn đường kính AO(3)
Từ (1), (2) và (3) suy ra A,M,E,N,O cùng thuộc 1 đường tròn
b) Xét ΔAMK và ΔAIM có
\(\widehat{AKM}=\widehat{AMI}\left(=\dfrac{1}{2}sđ\stackrel\frown{IM}\right)\)
\(\widehat{IAM}\) chung
Do đó: ΔAMK∼ΔAIM(g-g)
Suy ra: \(\dfrac{AM}{AI}=\dfrac{AK}{AM}\)
hay \(AM^2=AK\cdot AI\)
câu b ý 2)
Theo câu b) ý 1 \(\Delta AMK\sim\Delta AIM\Rightarrow\dfrac{MI}{MK}=\dfrac{AM}{AK}\Rightarrow\dfrac{MI^2}{MK^2}=\dfrac{AM^2}{AK^2}\)
mà \(AM^2=AI.AK\Rightarrow\dfrac{MI^2}{MK^2}=\dfrac{AI.AK}{AK^2}=\dfrac{AI}{AK}\)